Special Topics in Condensed Matter Physics (PHYS562)


Course Materials: Syllabus

Course textbook:

P. Fazekas: Lecture Notes on Electron Correlation and Magnetism, World
Scientific, (1999)

F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin: The One-Dimensional Hubbard Model, Cambridge (2005)

V. E. Korepin, N. M. Bogoliubov, and A. N. Izergin: Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics, (1997)



Lecture Notes:

Lecture 1 (Introduction: how strongly correlated models arise)

Lecture 2 & 3 (Atoms, ions, molecules under a magnetic field)

Lecture 4 (Crystal field theory)

Lecture 5 (Crystal field theory)

Lecture 6 (Exact solution for a magnetic model)/b>

Lecture 7 (Exact solution for a magnetic model)

Lecture 8 (Hubbard model, basics)

Lecture 9 (Symmetries of the Hubbard model)

Lecture 10 & 11 (Hubbard subbands, large U limit)

Lecture 12 (large U limit, Heisenberg and t-J models)

Lecture 13 (literature list for Monte Carlo methods)

Lecture 14 (superexchange, extended Hubbard, orbital order)

Lecture 15 (Hubbard model, exact solution, two-particle example)

Lecture 16 (Berry phase, polarization)

Lecture 17 (Modern theory of polarization)

< Lecture 18 (Integer quantum Hall effect)

Lecture 19 (Topological band theory, Haldane model)

Lecture 20 (Topological insulators in two dimensions, Kane-Mele model)


Problem Sets

Solution to quizzes 1, 2, and 3

Solution to quizzes 4