Solution 5.1

a)
\[(1 + i)^3 = (1 + i)(1 + 2i + i^2) = (1 + i)(1 + 2i - 1) = (1 + i)2i = -2 + 2i\] \(\text{(1)}\)

b)
\[\frac{1 + i}{1 - i} = \frac{(1 + i)(1 + i)}{(1 - i)(1 + i)} = \frac{2i}{2} = i\] \(\text{(2)}\)

c)
\[e^{2 + i\pi/4} = e^2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right) = e^2 \frac{\sqrt{2}}{2} (1 + i)\] \(\text{(3)}\)

d)
\[\sin\left(\frac{\pi}{4} + 2i\right) = \sin(\pi/4) \cos 2i + \cos(\pi/4) \sin 2i = \frac{\sqrt{2}}{2} (\cos 2i + \sin 2i) = \frac{\sqrt{2}}{2} \left(\frac{e^{-2i^2} + e^{2i^2}}{2} + \frac{e^{2i^2} - e^{-2i^2}}{2i}\right) = \frac{\sqrt{2}}{4} (e^2 + e^{-2} + i(e^2 - e^{-2}))\] \(\text{(4)}\)

Solution 5.2

\[1 = \cos 2\pi k + i \sin 2\pi k\] \(\text{(5)}\)

where \(k\) is an integer. Then;
\[\sqrt{n} = (e^{i2\pi k})^{1/n}\] \(\text{(6)}\)

or
\[\sqrt{n} = (e^{i2\pi/n})^k\] \(\text{(7)}\)
We see that \(1^{(1/n)}\) has \(n\) complex roots in the form \((W_n)^k\) such that:
\[
W_n = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}
\]
where
\[
k = 0, 1, 2, ..., n - 1
\]
When \(k \geq n\) we don’t get any different root, that is the root is already contained in the set \(k = 0, 1, 2, ..., n - 1\) as you can easily prove by using Eq.7. So the roots of \(1^{(1/n)}\) are equally spaced around the unit circle in the complex plane.

Solution 5.3

\[
|R_1 e^{i\theta_1} + R_2 e^{i\theta_2}|^2 = |R_1 (\cos \theta_1 + i \sin \theta_1) + R_2 (\cos \theta_2 + i \sin \theta_2)|^2
= |(R_1 \cos \theta_1 + R_2 \cos \theta_2) + i(R_1 \sin \theta_1 + R_2 \sin \theta_2)|^2
= (R_1 \cos \theta_1 + R_2 \cos \theta_2)^2 + (R_1 \sin \theta_1 + R_2 \sin \theta_2)^2
= R_1^2 \cos^2 \theta_1 + R_2^2 \cos^2 \theta_2 + 2R_1 R_2 \cos \theta_1 \cos \theta_2
+ R_1^2 \sin^2 \theta_1 + R_2^2 \sin^2 \theta_2 + 2R_1 R_2 \sin \theta_1 \sin \theta_2
= R_1^2 + R_2^2 + 2R_1 R_2 (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2)
= R_1^2 + R_2^2 + 2R_1 R_2 \cos(\theta_1 - \theta_2)
\]

Solution 5.4

Let me denote the miss distance as \(\Delta l\) and uncertainty in position as \(\Delta x\). We are searching for the minimum uncertainty, so that the uncertainty relation becomes:
\[
\Delta p \Delta x = \hbar/2
\]
Note that \(\Delta x = 2\Delta l\), \(\Delta p = m \Delta v\), \(\Delta l = t \Delta v\) and \(t = \sqrt{\frac{2H}{g}}\). Insert all these equations into Eq.11;
\[
2m \frac{\Delta l}{\sqrt{\frac{2H}{g}}} \Delta l = \frac{\hbar}{2}
\]
Then the miss distance \(\Delta l\) will be;
\[
\Delta l = \left(\frac{\hbar}{4m}\right)^{1/2} \left(\frac{2H}{g}\right)^{1/4}
\]
or
\[\Delta l = \left(\frac{\hbar}{2m} \right)^{1/2} \left(\frac{H}{2g} \right)^{1/4} \]
\tag{14}

b)
\[\Delta l = \left(\frac{6.63 \times 10^{-34}}{4\pi \times 0.5 \times 10^{-3}} \right)^{1/2} \left(\frac{2.0}{2 \times 9.8} \right)^{1/4} \approx 1.8 \times 10^{-16} \text{ m} \]
\tag{15}

Solution 5.5

a)
\[h = 2\pi \text{ J.s} \Rightarrow \hbar = 1 \text{ J.s} \]
\tag{16}

The uncertainty relation becomes;
\[\Delta p \Delta x \geq \frac{1}{2} \text{ J.s} \]
\tag{17}

We are searching for the minimum uncertainty, that is;
\[\Delta p \Delta x = \frac{1}{2} \text{ J.s} \]
\tag{18}

Using \(\Delta p = m \Delta v \) and \(\Delta x = 1 \text{ m} \);
\[m \Delta v \Delta x = \frac{1}{2} \Rightarrow \Delta v = \frac{1 \text{ J.s}}{2 \times 2.0 \text{ kg} \times 1.0 \text{ m}} = 0.25 \text{ m/s} \]
\tag{19}

b)

The uncertainty in position increases with time (\(\Delta x = t \Delta v \)) such that after 5.0 s it increases \(2 \times 0.25 \text{ m/s} \times 5.0 \text{ s} = 2.5 \text{ m} \), then with the initial uncertainty;
\[\Delta x = 3.5 \text{ m} \]
\tag{20}