MATH 116 INTERMEDIATE CALCULUS III
FINAL EXAM
Date: July 22, 2005, Time: 9:00-11:00

SURNAME/NAME:...

ID:................................... Section.................

1 Check that there are 5 questions on your booklet.
2 Show all your work. Correct answers without sufficient explanation may not get full credit.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

20 20 20 20 20
Problem 1. Suppose that function $f(x, y, z)$ has continuous second order partial derivatives and $f(x, y, z) = g(r)$, where $r = \sqrt{x^2 + y^2 + z^2}$. Evaluate $f_{xx} + f_{yy} + f_{zz}$ at point $(2, -2, 1)$ given that $g_r(3) = 6$ and $g_{rr}(3) = 1$.
Problem 2. Show that the curve \(\vec{r}(t) = \sqrt{t} \, \vec{i} + \sqrt{t} \, \vec{j} - \frac{t + 3}{4} \, \vec{k} \) is normal to the surface \(x^2 + y^2 - z = 3 \) at the intersection point.
Problem 3. Let \(F = (3x^2y + z^2)\vec{i} + (x^3 - 2yz)\vec{j} + (2xz - y^2)\vec{k} \) be a vector field.

(a) Show that vector field \(F \) is conservative.

(b) Evaluate the counterclockwise circulation \(\oint_C F \circ dr \), where \(C \) is the graph of function
\[
\vec{r}(t) = \sin \frac{t}{2}\vec{i} + \tan \frac{t}{4}\vec{j} + \frac{t}{\pi}\vec{k}, \quad 0 \leq t \leq \pi.
\]
Problem 4. Let C be the boundary of the rectangle having vertices at points $(0,0,0)$, $(0,3,3)$, $(1,3,3)$, $(1,0,0)$ oriented in the clockwise direction when viewed from high on the z-axis. Find circulation $\oint_C F \cdot dr$ of the vector field $F = x^2 \vec{i} + 4xy^3 \vec{j} + y^2 x \vec{k}$ around the curve C.
Problem 5. Let D be the region given by $x^2 + y^2 + z^2 \leq 4a^2$ and $x^2 + y^2 \geq a^2$. Let S be the surface of solid D. Evaluate the flux $\int_S F \cdot \mathbf{n} \, d\sigma$ of the vector field $F = (x + yz)\mathbf{i} + (y - xz)\mathbf{j} + (z - e^x \sin y)\mathbf{k}$ across the surface S.