Question 1. (20 points) Let $X = \mathbb{R}^2$ with the Euclidean metric d, and let

$$E = \{(x, y) : 0 < x \leq 2, \ 0 < y \leq 1\}.$$

By using the definition (i.e., without using the Heine-Borel Theorem), prove that E is not compact.

Question 2. (20 points) Let $X = \mathbb{R}$ with the absolute value metric d. Let

$$E = \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\} \cup \{0\}.$$

By using the definition (i.e., without using the Heine-Borel Theorem), prove that E is compact.

Question 3. (20 points) Let X be any infinite set, and d be the discrete metric on X. Prove that a subset K of X is compact \iff K is a finite set.

Question 4. (20 points) Remember given two nonempty subsets A and B of a metric space (X, d), we define the distance $\text{dist}(A, B)$ between A and B, by

$$\text{dist}(A, B) = \inf\{d(p, q) : p \in A, q \in B\}.$$

(a) Prove that in an arbitrary metric space X, there are sequences $\{p_n\}$ in A, and $\{q_n\}$ in B such that $\lim_{n \to \infty} d(p_n, q_n) = \text{dist}(A, B)$.

(b) Assume now that $X = \mathbb{R}^2$ with the Euclidean metric d. Prove that if A and B are two nonempty subsets of X, such that A is closed, and B is compact, then there are points $p_0 \in A$ and $q_0 \in B$ such that $\text{dist}(A, B) = d(p_0, q_0)$.

Remark. If A and B are both closed, but neither is compact then the claim in (b) is not correct.