MATH 215 Homework 11

Turn in by May 9th, 2014 until 10:30 am.

Question 1. (20 × 2 = 40 points) Let \(f_n(x) = \frac{nx}{1+nx^2} \) and \(f(x) = \frac{1}{x} \).

(a) Prove that \(f_n \to f \) uniformly on \(E = [1, \infty) \).

(b) Prove that \(f_n \to f \) pointwise, but not uniformly on \(E = (0, 1) \).

Question 2. (20 points) Let \(f_n(x) = n^2xe^{-nx} \), and \(f(x) = 0 \). Prove that \(f_n \to f \) uniformly on every closed and bounded interval \([a, b] \) where \(0 < a < b \).

Question 3. (20 points) Let \(g : [0, 1] \to \mathbb{R} \) be a continuous function such that \(g(1) = 0 \). Let \(f_n(x) = g(x)x^n \), and \(f(x) = 0 \). Prove that \(f_n \to f \) uniformly on \([0, 1] \).

Question 4. (20 points) Let \(C[0, 1] \) be the set of all continuous functions \(f : [0, 1] \to \mathbb{R} \) with the sup metric

\[
d(f, g) = \sup\{|f(s) - g(s)| : s \in [0, 1]\}.
\]

Prove that the closed ball \(B_1[0] \) in this space at center \(f = 0 \) (i.e., the constant function 0) and radius 1, is not compact.

Hint. Consider the sequence of functions \(\{f_n\} \in B_1[0] \), defined by \(f_n(s) = s^n \).