MATH 215 Homework 10

April 18, 2014

Turn in by April 30, 2014 until 10:30 am.

Question 1. (20 × 2 = 40 points)

Recall. For a fixed nonempty subset A of a metric space (X,d), we have defined $f_A : X \to \mathbb{R}$ by $f_A(x) = \text{dist}(x,A) = \text{g.l.b.}\{d(x,a) : a \in A\}$. We have also proved that f_A is continuous on X.

(a) Prove that for an arbitrary point $p \in X$, $p \in \overline{A} \iff f_A(p) = 0$.

(b) Let A and B be two nonempty closed subsets of X, such that $A \cap B = \emptyset$. Prove that there are two nonempty open sets E and F in X, such that $A \subset E$, $B \subset F$, and $E \cap F = \emptyset$.

Hint. Consider the function $g : X \to \mathbb{R}$ defined by $g(x) = f_A(x) - f_B(x)$, and the sets $E = \{x \in X : g(x) < 0\}$, $F = \{x \in X : g(x) > 0\}$. Prove that the sets E and F have all the desired properties.

Remark. This fact is sometimes expressed by saying “in a metric space, two disjoint closed sets can be separated by two disjoint open sets”.

Question 2. (20 points)

Definition. Given a metric space (X,d), and two points $p,q \in X$, a continuous function $\phi : [0,1] \to X$ (where the interval $[0,1] \subset \mathbb{R}$ has the absolute value metric), is called an arc, and it is said to join p to q, if $\phi(0) = p$ and $\phi(1) = q$. An arc is said to lie in a subset E of X, if $\phi(t) \in E$ for all $t \in [0,1]$. We say that a subset E of X is arcwise connected (or path connected), if for every pair of points $p,q \in E$, there is an arc joining p to q which lies in E.

Question. Let (X,d) be an arbitrary metric space, and E a nonempty subset of X. Prove that, E is arcwise connected \Rightarrow E is connected.

Question 3. (20 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a polynomial of degree 3, that is $f(x) = ax^3 + bx^2 + cx + d$, where a,b,c,d are real constants, and $a \neq 0$. Prove that $f(\mathbb{R}) = \mathbb{R}$.

Question 4. (20 points) Let $X = B(\mathbb{N})$, i.e., the set of all bounded functions $f : \mathbb{N} \to \mathbb{R}$, with the sup metric. Note that a function $f : \mathbb{N} \to \mathbb{R}$ is a sequence $\{x_n\}$ in \mathbb{R}, where $x_n = f(n)$. So $X = B(\mathbb{N})$ is the set of all bounded sequences $\{x_n\}$ in \mathbb{R}, where for $p = \{x_n\} \in X$ and $q = \{y_n\} \in X$, we have that

$$d(p,q) = d(\{x_n\}, \{y_n\}) = \sup\{|x_n - y_n| : n \in \mathbb{N}\}.$$

Let \emptyset denote the sequence $\emptyset = \{0,0,\ldots,0,\ldots\}$.

Let p denote the sequence $\emptyset = \{0,0,\ldots,0,\ldots\}$.

Question. Prove that the closed ball $B_1[0]$ in X is not compact.

Hint. Consider the sequence $\{e^k\}$ in X defined by

$$e^1 = \{1,0,0,\ldots\}, e^2 = \{0,1,0,0,\ldots\}, e^3 = \{0,0,1,0,0,\ldots\}, \ldots e^k = \{0,\ldots,0,1,\ldots\}, \ldots$$

k-th