Date: 18 June 2005

MATH 215 MIDTERM 1 SOLUTIONS

Q 1. Let A and B be two nonempty subsets of \mathbb{R} that are bounded below. Assume $\inf A < \inf B$. Show that there is an element $a_0 \in A$ such that a_0 is a lower bound for the set B.

Solution. Let $b^* = \inf B$. Since $\inf A < b^*$, i.e., the number b^* is strictly greater than the greatest lower bound of the set A, the number b^* cannot be a lower bound for the set A. So there is an element $a_0 \in A$ such that $a_0 < b^*$. If x is an arbitrary element of B, then $b^* \leq x$ (since b^* is a lower bound for the set B). Then by the trichotomy law we have that $a_0 < x$. So a_0 is less than all elements of B, i.e., a_0 is a lower bound for B.

Q 2. Let \tilde{C} denote the set of all complex numbers $x + iy$ where both x and y are rational numbers. Show that the set \tilde{C} countable.

Solution. We use Cantor’s counting scheme. We know that the set of all rational numbers \mathbb{Q} is countable. So we can write the elements of \mathbb{Q} as a sequence.

$$\mathbb{Q} = \{q_1, q_2, q_3, q_4, \ldots\}.$$

We consider the following infinite array of the elements of \tilde{C}.

<table>
<thead>
<tr>
<th></th>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>$q_1 + iq_1$</td>
<td>$q_1 + iq_2$</td>
<td>$q_1 + iq_3$</td>
<td>$q_1 + iq_4$</td>
<td>\ldots</td>
</tr>
<tr>
<td>q_2</td>
<td>$q_2 + iq_1$</td>
<td>$q_2 + iq_2$</td>
<td>$q_2 + iq_3$</td>
<td>$q_2 + iq_4$</td>
<td>\ldots</td>
</tr>
<tr>
<td>q_3</td>
<td>$q_3 + iq_1$</td>
<td>$q_3 + iq_2$</td>
<td>$q_3 + iq_3$</td>
<td>$q_3 + iq_4$</td>
<td>\ldots</td>
</tr>
<tr>
<td>q_4</td>
<td>$q_4 + iq_1$</td>
<td>$q_4 + iq_2$</td>
<td>$q_4 + iq_3$</td>
<td>$q_4 + iq_4$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Then we define $F : \mathbb{N} \rightarrow \tilde{C}$ as follows

$$\begin{array}{cccccccc}
\mathbb{N} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\downarrow & \ldots \\
\tilde{C} & q_1 + iq_1 & q_1 + iq_2 & q_2 + iq_1 & q_1 + iq_3 & q_2 + iq_2 & q_3 + iq_1 & q_1 + iq_4 & q_2 + iq_3 & \ldots \\
\end{array}$$

This way we get a 1-1 correspondence between \mathbb{N} and \tilde{C}.
Q 3. Let X and Y be two nonempty sets and $f : X \to Y$ be a function. Show that for all subsets $B_1 \subset Y$ and $B_2 \subset Y$ we have

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$$

Solution. Let $x \in f^{-1}(B_1 \cap B_2)$. Then by definition of the inverse image $f(x) \in B_1 \cap B_2$. So $f(x) \in B_1$ and $f(x) \in B_2$. It means that $x \in f^{-1}(B_1)$ and $x \in f^{-1}(B_2)$, i.e., $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. So $f^{-1}(B_1 \cap B_2) \subset f^{-1}(B_1) \cap f^{-1}(B_2)$.

Conversely let $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. Then $x \in f^{-1}(B_1)$ and $x \in f^{-1}(B_2)$, so $f(x) \in B_1$ and $f(x) \in B_2$. Thus $f(x) \in B_1 \cap B_2$, which means by the definition of the inverse images that $x \in f^{-1}(B_1 \cap B_2)$. Thus $f^{-1}(B_1 \cap B_2) \subset f^{-1}(B_1 \cap B_2)$.

Q 4. Let E and F be two nonempty subsets of a metric space. Show that

$$E \cup F = \overline{E} \cup \overline{F}.$$

Solution. We are going to use the following:

(a) For any subset A of X, \overline{A} is a closed set.
(b) For any subset A of X, $A \subset \overline{A}$.
(c) If $A \subset B$ and B is closed, then $\overline{A} \subset B$.
(d) The union of finitely many closed sets is closed, hence in particular the union of two closed sets is closed.

We have

$$E \subset E \cup F \overset{(b)}{\subset} \overline{E \cup F} \overset{(a)}{\supset} \overline{E} \overset{(c)}{\subset} E \subset E \cup F.$$

Similarly $F \subset \overline{E \cup F}$. So taking the union we get $E \cup F \subset \overline{E \cup F}$.

Conversely, $E \overset{(b)}{\subset} \overline{E}$ and $F \overset{(b)}{\subset} \overline{F}$ implies $E \cup F \subset \overline{E \cup F}$.

By (a) and (d), the set $E \cup F$ is closed. By (c), we have that $E \cup F \subset \overline{E \cup F}$.

Q 5. For the following sets E, draw the picture of E, find $\text{int} E, E', \overline{E}$. Determine whether the sets E are connected and compact. No proofs are necessary.

a) $X = \mathbb{R}^2$, $E = \{(x, y) : 1 < x^2 + y^2 \leq 4\} \cup \{(0, 0)\}$.

Solution.

$$\text{int} E = \{(x, y) : 1 < x^2 + y^2 < 4\}$$

$$E' = \{(x, y) : 1 \leq x^2 + y^2 \leq 4\}$$

$$\overline{E} = \{(x, y) : 1 \leq x^2 + y^2 \leq 4\} \cup \{(0, 0)\}.$$

The set E is not connected and not compact.
b) \(X = \mathbb{R}^2, E = \{(\frac{1}{m}, \frac{1}{n}) : m, n \in \mathbb{N}\}. \)

Solution.

\[
\text{int}E = \emptyset
\]

\[
E' = \left\{(1, 0), \left(\frac{1}{2}, 0\right), \left(\frac{1}{3}, 0\right), \ldots, (0, 1), \left(0, \frac{1}{2}\right), \left(0, \frac{1}{3}\right), \ldots, (0, 0)\right\}
\]

\[
E = \left\{\left(\frac{1}{m}, \frac{1}{n}\right) : m, n \in \mathbb{N}\right\} \cup \left\{(1, 0), \left(\frac{1}{2}, 0\right), \left(\frac{1}{3}, 0\right), \ldots, (0, 1), \left(0, \frac{1}{2}\right), \left(0, \frac{1}{3}\right), \ldots, (0, 0)\right\}
\]

The set \(E \) is not connected and not compact.