MATH 215 Homework 2

Turn in by June 20, 2005 until 9:40 a.m.

Each question is 4 points, total: 20 points.

In problems 1, 2, and 3, X will denote an arbitrary metric space with the metric d.

1. Let $E \subset X$. Show that $\text{int} E$ is an open set.

2. If A is an open set and $A \subset E \subset X$, then $A \subset \text{int} E$.

3. a) Let $\{E_i : i \in I\}$ be any collection of open sets in X. Show that $\bigcup_{i \in I} E_i$ is also open.
 b) Let E_1, E_2, \ldots, E_n be a finite collection of open sets in X. Show that $E_1 \cap E_2 \cap \cdots \cap E_n$ is also open.

4. For the following set $E \subset \mathbb{R}^2$, draw the picture of the set and find $\text{int} E$, E' and \overline{E}. Determine also whether E is connected. No proofs are needed.
 For $n \in \mathbb{N}$, let $E_n = \{(x, y) : x = \frac{1}{n}, y \in \mathbb{R}, 0 < y \leq \frac{1}{n}\}$, and $E = \bigcup_{n=1}^{\infty} E_n$.

5. By using only the definition, show that the set E in Problem 4 is not compact, i.e., find an open cover of E which does not have a finite subcover.