(1) 27-7-a) Multiply the equation $AB = 0$ by A^{-1} from the left:

$$A^{-1}AB = 0 \iff B = 0$$

27-7-b) Since A is not invertible, the system $AX = 0$ has a nontrivial solution. Let

$$B = \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ x_2 & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & 0 \\ x_n & 0 & \cdots & 0 \end{pmatrix}$$

where $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \neq 0$ is the nontrivial solution of the system $AX = 0$. Then $AB = 0$.

(2) 27-8 (\implies) Since it is invertible, the matrix A is row equivalent to identity matrix. We have 2 cases: $ac = 0$ or $ac \neq 0$.

Case 1: $ac=0$ Since $A \sim I_2$, they can not be both zero. Without loss of generality, we can assume $c = 0$ and $a \neq 0$. In this case, we have

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

This means that $d \neq 0$ and hence $ad - bc = ad \neq 0$.

Case 2: $ac \neq 0$ Assume for a contradiction that $ad - bc = 0$. Then,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{b}{a} \\ c & d \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & \frac{da - bc}{a} \end{pmatrix}.$$

Contradiction since the reduced row echelon form of A is the identity matrix.

(\iff) **Case 1: $ac=0$** Since $ad - bc \neq 0$, either $a = 0$ or $c = 0$. WLOG, let $c = 0$. In this case, $ad \neq 0$ i.e $a \neq 0$ and $d \neq 0$. Therefore, we have

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & d \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

i.e A is invertible.

Case 2: $ac \neq 0$
\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sim \begin{pmatrix} 1 & b \\ c & d \end{pmatrix} \sim \begin{pmatrix} 1 & b \\ 0 & \frac{da-bc}{d} \end{pmatrix} \sim \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
i.e \(A \) is invertible.

(3) **34-6** We need to prove that the operations are well-defined and \(V \) with these operations satisfies the vector space axioms. The latter is follows from the properties of addition and multiplication of real numbers. For the first one, note that

\[
(f + g)(-t) = f(-t) + g(-t) = \overline{f(t)} + \overline{g(t)} = \overline{(f + g)(t)}, \text{i.e. } f + g \in V
\]

\[
(cf)(-t) = cf(-t) = \overline{cf(t)} = \overline{c\overline{f(t)}} = cf(t), \text{ i.e. } cf \in V (\text{since } c \in \mathbb{R}).
\]

(4) **39-4** Since

\[
\begin{pmatrix} 2 & -1 & \frac{4}{3} & -1 & 0 \\ 1 & 0 & \frac{2}{3} & 0 & -1 \\ 9 & -3 & 6 & -3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{2}{3} & 0 & -1 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},
\]

then the space of solutions of \(AX = 0 \) is

\[
\left\{ \left(\frac{-2a}{3} + c, -b + 2c, a, b, c \right) \mid a, b, c \in \mathbb{R} \right\}.
\]

Therefore, the set \(\left\{ \left(\frac{-2}{3}, 0, 1, 0, 0 \right), (0, -1, 0, 1, 0), (1, 2, 0, 0, 1) \right\} \) spans the space of solutions of \(AX = 0 \).

(5) **40-9** Since \(W_1 + W_2 = V \), for every \(v \in V \) there exists \(\alpha_1 \in W_1 \) and \(\alpha_2 \in W_2 \) such that \(v = \alpha_1 + \alpha_2 \). This proves the existence. For the uniqueness, let \(\alpha_1, \alpha'_1 \in W_1 \) and \(\alpha_2, \alpha'_2 \in W_2 \) be such that

\[
v = \alpha_1 + \alpha_2 = \alpha'_1 + \alpha'_2 \iff \underbrace{\alpha_1 - \alpha'_1}_{\in W_1} = \underbrace{\alpha'_2 - \alpha_2}_{\in W_2}.
\]

Since \(W_1 \cap W_2 = \{0\} \), we have \(\alpha_1 = \alpha'_1 \) and \(\alpha_2 = \alpha'_2 \).