LECTURE 13, MONDAY 22.03.04

FRANZ LEMMERMEYER

1. Hensel’s Lemma

Now let us talk a little bit about the structure of p-adic fields. We will interpret \mathbb{Z}_p as the projective limit of the rings $\mathbb{Z}/p^n\mathbb{Z}$, and $\pi_n : \mathbb{Z}_p \rightarrow \mathbb{Z}/p^n\mathbb{Z}$ as the projection onto its n-th component. Thus we will write $x \in \mathbb{Z}_p$ as sequences $x = (x_1, x_2, x_3, \ldots)$ with $x_n \in \mathbb{Z}/p^n\mathbb{Z}$. If you want to think of p-adic integers as power series $a_0 + a_1 p + a_2 p^2 + \ldots$ in p, then $x_1 = a_0$, $x_2 = a_0 + a_1 p$, $x_3 = a_0 + a_1 p + a_2 p^2$, etc.

Our first claim is

Proposition 1. The sequence

$$0 \rightarrow \mathbb{Z}_p \xrightarrow{p^n} \mathbb{Z}_p \xrightarrow{\pi_n} \mathbb{Z}/p^n\mathbb{Z} \rightarrow 0$$

is exact. In particular, $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$.

Proof. Let us first show that multiplication by p is injective; by induction, this will show that multiplication by p^n is injective.

Assume therefore that $x = (x_1, x_2, \ldots) \in \mathbb{Z}_p$ satisfies $px = 0$. Then $px_{n+1} = 0$ in $\mathbb{Z}/p^n\mathbb{Z}$, which implies that x_{n+1} is divisible by p^n. But then so is $x_n = \pi_n x_{n+1}$, hence $x_n = 0$. Since this is valid for any n, we conclude that $x = 0$.

Since π_n is clearly surjective, it remains to prove that $\ker \pi_n = p^n\mathbb{Z}_p$. It is clear that $p^n\mathbb{Z}_p \subseteq \ker \pi_n$, so assume that $x \in \ker \pi_n$ satisfies $x = \pi_n(x) = 0$. Then $x_1 = \pi_1^n(x_n) = 0$ for all $k \leq n$, hence we have $x = (0, 0, \ldots, 0, x_{n+1}, x_{n+1}, \ldots)$. But for $m > n$ we have $0 = x_m = \pi_m^n x_n$, hence x_m is in the kernel of reduction modulo p^n, in other words, x_m is represented by an integer divisible by p^n. This means that $x = p^n x'$ for some $x' \in \mathbb{Z}_p$, hence $\ker \pi_n \subseteq p^n\mathbb{Z}_p$. □

Proposition 2. A p-adic integer $u \in \mathbb{Z}_p$ is a unit if and only if $p \nmid u$.

Proof. If u is a unit, then $uv = 1$ for some $v \in \mathbb{Z}_p$. Reducing modulo p show that $\pi_1(u)\pi_1(v) = 1$ in $\mathbb{Z}/p\mathbb{Z}$, hence $\pi_1(u)$ is a unit in $\mathbb{Z}/p\mathbb{Z}$ and thus not divisible by p. Conversely, assume that $u = (u_1, u_2, \ldots)$ is not divisible by p. Then $u_1 = \pi_1^n u_n$ is not divisible by p, and this shows that u_n is a unit in $\mathbb{Z}/p^n\mathbb{Z}$. But then $u^{-1} = (u_1^{-1}, u_2^{-1}, u_3^{-1}, \ldots)$ is an inverse of u in \mathbb{Z}_p. □

Proposition 3. Every nonzero element $x \in \mathbb{Z}_p$ has a unique representation of the form $x = up^n$, where $u \in \mathbb{Z}_p^\times$ and $n \geq 0$.

Proof. Since $x \neq (x_1, x_2, \ldots) \neq 0$, there is a minimal $n \geq 0$ with $x_{n+1} \neq 0$. Then $x = p^n u$ for the unit $u = p^{-n}(x_{n+1}, x_{n+2}, \ldots)$. Uniqueness is clear. □

More generally, every p-adic number $x \in \mathbb{Q}_p^\times$ can be written uniquely as $x = up^n$ for some unit $u \in \mathbb{Z}_p^\times$ and an integer $n \in \mathbb{Z}$. This shows that, as abelian groups, we have $\mathbb{Q}_p^\times \cong \mathbb{Z} \cdot \mathbb{Z}_p^\times$.

1
As a very modest Local-Global Principle, let us prove

Proposition 4. A rational number a is a square in \mathbb{Q} if and only if it is a square in every completion \mathbb{Q}_p (including $\mathbb{R} = \mathbb{Q}_\infty$).

Proof. A rational number can be written as $a = u p^m$ in \mathbb{Q}_p, where $u \in \mathbb{Z}_p^\times$ is a unit and m an integer. If a is a square in \mathbb{Q}_p, then m must be even, and this shows that the prime factor p occurs in a to an even power. Since a is a square in \mathbb{R}, we must have $a > 0$. But then a is a product of squares, hence a square in \mathbb{Q}.

Our next goal will be showing that the p-adic number fields \mathbb{Q}_p contain a lot more “irrationalities” than their common subfield \mathbb{Q}. We start with

Theorem 5. For any integer a not divisible by the prime p, the sequence a, a^p, a^{p^2}, \ldots converges in \mathbb{Z}_p to some element $\omega(a) = (a, a^p, a^{p^2}, \ldots)$ with the property that $\omega(a)^{p^{-1}} = 1$.

What this result tells us is that \mathbb{Q}_p contains the $p - 1$-th roots of unity.

Proof. Consider the element $(a, a^p, a^{p^2}, \ldots) \in \prod \mathbb{Z}/p^n \mathbb{Z}$; in order to show that it is in \mathbb{Z}_p, we have to show that the sequence is compatible, i.e., that $a^{p^{n+1}} \equiv a^{p^n}$ mod p^{n+1}. For $n = 0$ this is just Fermat’s Little Theorem. Now use induction.

Corollary 6. If p is an odd prime, then $\mathbb{Z}_p^\times \simeq \mathbb{Z}/(p - 1)\mathbb{Z} \oplus H$, where $H = \{u \in \mathbb{Z}_p : u \equiv 1 \mod p\}$ is the group of principal units.

In fact, given any unit u with $u \equiv a \mod p$, the unit $v = u \omega(a)^{-1}$ is in H. Using the p-adic logarithm, it is easy to verify that $H \simeq \mathbb{Z}_p$ as an abelian group.

Proposition 7. The group \mathbb{Z}_p is torsion free.

Proof. This is trivial: $nx = 0$ for some integer $n \in \mathbb{N}$ and $x \in \mathbb{Z}_p$ implies $n = 0$ or $x = 0$ since \mathbb{Z}_p is a domain. Here we have used the fact that $\mathbb{Z} \hookrightarrow \mathbb{Z}_p$.

Exercise: Consider the ring homomorphism $\mathbb{Z} \hookrightarrow \mathbb{Z}_p$. Show that it induces a ring homomorphism $\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}_p/n\mathbb{Z}_p$. Determine kernel and image.

Next we will explain why $\sqrt{2} \in \mathbb{Q}_5$ but $\sqrt{2} \notin \mathbb{Q}_5$ (here $\sqrt{2}$ does not stand for the real number $1.414\ldots$, since this number is not contained in any \mathbb{Q}_p; it simply does not converge there. Rather, $\sqrt{2}$ denotes a solution of $x^2 = 2$ in \mathbb{Q}_p.)

It is in fact easy to see why \mathbb{Q}_5 does not contain a square root of 2: assume that $x^2 = a$ in \mathbb{Q}_p for some odd prime $p \nmid a$; then $1 = |a|_p = |x^2|_p = |x|^2_p$, hence $|x|_p = 1$ and x is a unit in \mathbb{Q}_p, in particular an element of \mathbb{Z}_p (observe that \mathbb{Z}_p consists of all $x \in \mathbb{Q}_p$ with $|x|_p \leq 1$). Now if $x^2 = a$ in \mathbb{Z}_p, then we can project this equality down to $\mathbb{Z}/p\mathbb{Z}$ using π_1, and we get $x^2 \equiv a \mod p$. Thus if $x^2 = a$ in \mathbb{Q}_p, then we necessarily must have $(a/p) = +1$.

We now prove the converse; theorems of this kind (giving conditions modulo p for solvability of equations in \mathbb{Z}_p) are called Hensel’s lemma.

Theorem 8. For odd primes $p \nmid a$ and $a \in \mathbb{Z}$, the equation $x^2 = a$ has a solution in \mathbb{Z}_p if and only if $(a/p) = +1$.

Proof. Assume that (a/p) = +1; then there is some integer 0 < x₀ < p with \(x₀^2 \equiv a \mod p \). Now we use Newton’s method: given an approximation \(x_n \), we construct a better approximation using \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} \).

Correct Limit: show that \(|x_{n+1}^2 - a|_p < |x_n^2 - a|_p \). This is easy since \(x_{n+1}^2 - a = \left(\frac{x_n^2 - a}{2x_n} \right)^2 \).

Convergence: show that \(|x_{n+1} - x_n|_p < |x_n - x_{n-1}|_p \). This follows from preceding claim. Details are left as homework. □

Similarly, it can be proved that an odd integer \(a \) is a square in \(ℤ₂ \) if and only if \(a \equiv 1 \mod 8 \).

These results have drastic consequences. Consider e.g. the field \(ℚ₅ \) of 5-adic numbers and look at all its quadratic extensions . . . , \(ℚ₅(\sqrt{-1}) \), \(ℚ₅(\sqrt{2}) \), \(ℚ₅(\sqrt{3}) \), \(ℚ₅(\sqrt{5}) \), . . . ; then the fact that \(-1/p\) = +1 shows that \(ℚ₅(\sqrt{-1}) = ℚ₅ \), and similarly \((6/5) = +1\) implies \(ℚ₅(\sqrt{2}) = ℚ₅(\sqrt{3}) \). Going on like this one very soon discovers that \(ℚ₅ \) has at most three quadratic extensions, namely \(ℚ₅(\sqrt{2}), ℚ₅(\sqrt{3}), \) and \(ℚ₅(\sqrt{5}) \).

This surprising fact generalizes to all \(ℚ_p \) with odd \(p \): if \(a \) is a nonsquare modulo \(p \), then the only quadratic extensions of \(ℚ_p \) are \(ℚ_p(\sqrt{a}), ℚ_p(\sqrt{p}), \) and \(ℚ_p(\sqrt{ap}) \). The prime 2 behaves differently: there are exactly 7 quadratic extensions of \(ℚ₂ \), and they are generated by \(\sqrt{-1}, \sqrt{5}, \) and \(\sqrt{2} \).

You should view this as part of the simplicity of \(p \)-adic numbers: theorems on quadratic extensions of these fields can be proved almost by inspection!

2. TORSION POINTS AND \(p \)-ADIC NUMBERS

Recall that our goal is to study torsion points in \(E(ℚ) \). So where do the \(p \)-adic fields \(ℚ_p \) come in? Here’s how. First of all, the inclusion \(ℚ \hookrightarrow ℚ_p \) for every prime \(p \) implies that \(E(ℚ) \hookrightarrow E(ℚ_p) \); the reason why \(E(ℚ_p) \) is important for understanding torsion points is that the image of \(E(ℚ) \) in \(E(ℚ_p) \) can be located rather precisely. The tool for doing so is the reduction map, which will be defined on the whole projective plane.

In fact, consider a point \(P \) in the projective plane \(ℙ²ℚ \). Rescaling if necessary we may assume that \(P = [x : y : z] \) for \(x, y, z \in ℤ_p \), and if we assume in addition that not all three coordinates are divisible by \(p \), then this representation is unique up to multiplication by units. Let \(\overline{P} = x \mod p \) be the reduction modulo \(p \) of the \(p \)-adic number; the point \(\overline{P} = [\overline{x} : \overline{y} : \overline{z}] \) is called the reduction of \(P \) (with respect to \(p \)).

Now consider an elliptic curve \(E : y^2 = x^3 + ax + b \) with \(a, b \in ℤ \). Reduction modulo \(p \) of points on \(E(ℚ_p) \) yield points defined over \(ℚ_p \); note, however, that \(E \) might be singular over \(ℚ_p \). If \(E \) is an elliptic curve over \(ℚ_p \), that is, if \(p \nmid \Delta \), then we say that \(E \) has good reduction at \(p \); otherwise we talk about bad reduction. In any case, the inverse image \(E₀ \) of \(E_{ns}(ℚ_p) \) under the reduction map is a subgroup of \(E(ℚ_p) \), and the reduction map induces a surjective group homomorphism \(E₀ \to E_{ns}(ℚ_p) \). The kernel of this map is called the kernel of reduction and denoted by \(E₁ \). By definition, we have the exact sequence

\[
0 \longrightarrow E₁ \longrightarrow E₀ \longrightarrow E_{ns}(ℚ_p) \longrightarrow 0.
\]

One of the theorems we will prove is

Theorem 9. \(E₁ ≃ ℤ_p \).
In particular E_1 is torsion free. This implies that torsion points in $E(\mathbb{Q})$ cannot lie in E_1, hence $E(\mathbb{Q})_{\text{tors}}$ must inject into $E(\mathbb{Q}_p) \setminus E_1$. Thus the reduction of some torsion point $[x : y : z]$ different from \mathcal{O} must land on some point $[\overline{x} : \overline{y} : \overline{z}] \in E(\mathbb{F}_p)$ in the affine plane, which implies $p \nmid \overline{z}$. Thus the point P has affine coordinates $(X, Y) = (\overline{x}, \overline{y})$ with $p \nmid z$, in other words: $E(\mathbb{Q})_{\text{tors}} \subseteq E(\mathbb{Z}_p)$ for every prime p.

This implies that the coordinates of a torsion point are integers:

Theorem 10. Let $E : y^2 = x^3 + ax + b$ be an elliptic curve with $a, b \in \mathbb{Z}$. Then any torsion point $P = (x, y) \in E(\mathbb{Q})_{\text{tors}} \setminus \{\mathcal{O}\}$ has integral coordinates: $x, y \in \mathbb{Z}$.

In a similar vein, we have

Theorem 11. Let $E : y^2 = x^3 + ax + b$ be an elliptic curve with $a, b \in \mathbb{Z}$. If E has good reduction at p, then there is an injective group homomorphism $E(\mathbb{Q})_{\text{tors}} \hookrightarrow E(\mathbb{F}_p)$.

Proof. Since $p \nmid \Delta$, we have $E_{\text{red}}(\mathbb{F}_p) = E(\mathbb{F}_p)$. Thus $E_0 = E(\mathbb{Q}_p)$, and the composition of the maps $E(\mathbb{Q}_p)_{\text{tors}} \rightarrow E(\mathbb{Q}_p) \rightarrow E_0/E_1 \simeq E(\mathbb{F}_p)$ is a group homomorphism with kernel $E(\mathbb{Q}_p)_{\text{tors}} \cap E_1$. Since E_1 is torsion free, the map is injective. Composing this injection with the injective group homomorphism $E(\mathbb{Q})_{\text{tors}} \rightarrow E(\mathbb{Q}_p)_{\text{tors}}$ proves the claim.

This result is very useful for bounding the torsion groups of families of elliptic curves. For example, the curves $E_p : y^2 = x^3 + px$ for primes $p \geq 3$ have good reduction at 3, hence $\# E(\mathbb{Q})_{\text{tors}} \leq \# E(F_3) \leq 4$. Since $(0, 0)$ is a point of order 2 (and the only one), we must have $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z}$ or $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z}$.

Finally, let us now derive the most famous result about torsion points: it was first proved by Nagell (a Scandinavian number theorist) in 1935 using Weierstrass \wp-functions; the investigation of elliptic curves over p-adic fields was started in 1937 by Elisabeth Lutz, a student of A. Weil.

Theorem 12 (Theorem of Nagell-Lutz). Let $E : y^2 = x^3 + ax + b$ be an elliptic curve with $a, b \in \mathbb{Z}$. If (x, y) is a torsion point on E, then $y = 0$ or $y^2 | (4a^3 + 27b^2)$.

This allows us to determine the torsion subgroup of an elliptic curve with small discriminant very quickly. Note, however, that the theorem only says that torsion points are integral: not every integral point is a torsion point.

The Theorem of Nagell-Lutz is a simple consequence of Theorem 10. In fact, it is sufficient to prove the following

Lemma 13. If $P = (x_P, y_P)$ is an affine point on $E : y^2 = x^3 + ax + b$, and if P and $2P$ have integral coordinates, then $y_P = 0$ or $y_P^2 | D = 4a^3 + 27b^2$.

Proof. The addition formulas give

$$x_{2P} = \frac{\phi(x_P)}{4\psi(x_P)} \quad \text{with} \quad \begin{cases} \phi(X) = X^4 - 2aX^2 - 8bX + a^2 \\ \psi(X) = X^3 + aX + b \end{cases}$$

With $f(X) = 3X^2 + 4a$ and $g(X) = 3X^3 - 5aX - 27b$ we can immediately verify that $f(X)\phi(X) - g(X)\psi(X) = D$. Putting $X = x_P$ in this identity, and observing that $\phi(x_P) = 4x_{2P}\psi(x_P)$ and $\psi(x_P) = y_P$, we deduce

$$y_P^2[4x_{2P}f(x_P) - g(x_P)] = D.$$

Since x_P, y_P and x_{2P} are integers by assumption, this implies that $y_P^2 | D$.

It remains to study the reduction map and prove that E_1 is torsion free.