1. \(p \)-adic Numbers

At the end of the 19th century, Hensel invented \(p \)-adic numbers as a number theoretical analogue of power series in complex analysis. It took more than 25 years before \(p \)-adic numbers were taken seriously by number theorists: this was when Hasse, around 1920, proved the Local-Global Principle for quadratic forms over \(\mathbb{Q} \):

A quadratic form in \(n \) variables with rational constants represents 0 nontrivially if and only if the quadratic form represents 0 nontrivially in each \(p \)-adic completion of \(\mathbb{Q} \). The point is that checking representability in \(p \)-adic fields is something that can be done easily, and in a finite number of steps.

So what are \(p \)-adic numbers? Actually there are several ways of introducing them.

The Naive Approach. Fix a prime number \(p \) and consider formal power series in \(p \):

\[
a = a_0 + a_1 p + a_2 p^2 + \ldots,
\]

where \(0 \leq a_i \leq p - 1 \). The key word here is formal, that is, you neglect things like convergence. Now you can clearly add, subtract and multiply such power series; for example, let us add the 5-adic numbers

\[
3 + 2 \cdot 5 + 0 \cdot 5^2 + 4 \cdot 5^3 + \ldots
\]

\[
1 + 4 \cdot 5 + 2 \cdot 5^2 + 2 \cdot 5^3 + \ldots
\]

Now observe that 6 = 1 + 5, hence 6 \cdot 5 = 1 \cdot 5 + 1 \cdot 5^2, hence we carry 1 and find

\[
4 + 6 \cdot 5 + 2 \cdot 5^2 + 6 \cdot 5^3 + \ldots = 4 + 1 \cdot 5 + 3 \cdot 5^2 + 1 \cdot 5^3 + \ldots,
\]

where we have carried another 1 at the coefficient of \(5^3 \). Clearly we can also multiply \(p \)-adic numbers this way, so we get a ring \(\mathbb{Z}_p \), the ring of \(p \)-adic integers, whose neutral element is 0 = 0 + 0 \cdot p + 0 \cdot p^2 + \ldots and whose unit element is 1 = 1 + 0 \cdot p + 0 \cdot p^2 + \ldots. Note that \(\mathbb{Z}_p \) contains \(\mathbb{Z} \) as a subring: every natural number \(a \) actually has a finite expansion into a \(p \)-adic series. What about \(-1\)?

Well,

\[
-1 = p - 1 - 1 \cdot p \\
= p - 1 + (p - 1) \cdot p - p^2 \\
= p - 1 + (p - 1) \cdot p + (p - 1) \cdot p^2 - p^3 \\
= \ldots \\
= p - 1 + (p - 1) \cdot p + (p - 1) \cdot p^2 + (p - 1) \cdot p^3 + \ldots
\]
Actually, this is not too surprising: consider the geometric series \(\frac{1}{1-x} = 1 + x + x^2 + \ldots \) and plug in \(p \): then \(\frac{1}{1-p} = 1 + p + p^2 + \ldots \), and multiplying through by \(p - 1 \) gives you the \(p \)-adic expansion of \(-1\) above. Actually, the “equation”

\[
-1 = 1 + 2 + 4 + 8 + \ldots
\]

can be found in Euler’s work (where, of course, it didn’t make too much sense).

It is a simple exercise to show that the ring \(\mathbb{Z}_p \) has no zero divisors, hence it is an integral domain; its quotient field \(\mathbb{Q}_p \) is called the field of \(p \)-adic numbers.

How do \(p \)-adic numbers (as opposed to \(p \)-adic integers) look like? You might know that in the ring of formal power series, an element is a unit if and only if its constant term is nonzero. The same works here: every \(p \)-adic integer of the form (1) is a unit if \(a_0 \neq 0 \) (or, more generally, if \(p \nmid a_0 \)). In particular, the prime \(p \) is a nonunit, and

\[
\frac{a_0 + a_1 p + a_2 p^2 + \ldots}{p} = a_0 p^{-1} + a_1 + a_2 p + \ldots;
\]

thus \(p \)-adic numbers are something like Laurent series in \(p \): power series in \(p \) with at most finitely many negative exponents.

Projective Systems. In order to get a more satisfying definition of \(p \)-adic numbers, let us “cut off” such a power series at some exponent. This seems to give us an integer, namely

\[
a_0 + a_1 p + a_2 p^2 + \ldots + a_{n-1} p^{n-1}.
\]

But remember that we are allowed to carry and borrow; if we borrow 1 from \(p^n \) and cut off at exponent \(n \), we get

\[
a_0 + a_1 p + a_2 p^2 + \ldots + (a_{n-1} + p)p^{n-1}.
\]

Thus cutting off does not seem to be a well defined process; fortunately, not all is lost: if we interpret the element after cutting off as an element of \(\mathbb{Z}/p^n \mathbb{Z} \), then carrying or borrowing does not do any harm.

This means that for every \(n \geq 1 \) there is a natural map

\[
\pi_n : \mathbb{Z}_p \longrightarrow \mathbb{Z}/p^n \mathbb{Z}
\]

defined by cutting off the expansion of a \(p \)-adic number at the exponent \(n \). These maps actually respect the ring structure, i.e., the \(\pi_n \) are ring homomorphisms. In addition, they are “compatible” in the following sense: if we cut off at the exponent \(n \) and then reduce the result modulo \(p^m \) for some \(m \leq n \), then we get the same number as if we had cut off at \(m \) right away. This means that

\[
\pi_m \circ \pi_n = \pi_m,
\]

where \(\pi_m : \mathbb{Z}/p^m \mathbb{Z} \longrightarrow \mathbb{Z}/p^m \mathbb{Z} \) is the canonical projection.

Thus the ring \(\mathbb{Z}_p \) of \(p \)-adic integers provides us with a projective system of rings.
A collection of sets (groups, rings, \ldots; this makes sense in pretty general categories) R_n and, for every pair $i < j$, maps (group homomorphisms, ring homomorphisms, morphisms in a category) $\pi_j^i : R_j \longrightarrow R_i$ is called a projective system if $\pi_j^i \circ \pi_k^j = \pi_k^i$ whenever $i < j < k$ (if you throw in identity maps $\pi_i^i : R_i \longrightarrow R_i$, you have these morphisms whenever $i \leq j$).

Now given such a projective system consisting of groups $\mathbb{Z}/p^n\mathbb{Z}$ and the corresponding natural projections, how can we get back our ring \mathbb{Z}_p? Remember that a p-adic number gave us cut-offs in every ring $\mathbb{Z}/p^n\mathbb{Z}$; but not every collection $(\alpha_n)_n$ of elements in these rings (or, in other words, an element in the direct product of the $\mathbb{Z}/p^n\mathbb{Z}$) will come from a p-adic number: those that do will satisfy the compatibility condition $\pi_n^m \alpha_n = \alpha_m$.

This suggests that given a projective system (R_i, π_j^i) of rings we should form the direct product $\prod R_i$ and then look for compatible sequences of elements: the subset $R = \{(r_1, r_2, \ldots) \in \prod R_i : \pi_j^i r_j = r_i \text{ for all } i < j\}$ of the direct product $\prod R_i$ actually forms a ring: it contains the sequences $0 = (0, 0, 0, \ldots)$ and $1 = (1, 1, 1, \ldots)$, and it is closed with respect to addition and multiplication inherited from the direct product; in fact, if $r = (r_i)$ and $s = (s_i)$ are compatible sequences, then so are $r + s = (r_i + s_i)$ and $rs = (r_is_i)$: this is because e.g. $\pi_j^i (r_j + s_j) = \pi_j^i(r_j) + \pi_j^i(s_j) = r_i + s_i$ etc.

The ring R constructed above from the projective system (R_i, π_j^i) is called the projective limit of the R_i, and we write $R = \lim \leftarrow R_i$. This construction allows you to think of elements of the projective limit as compatible sequences of elements of the R_i. Moreover, we get the morphisms $\pi_i : R \longrightarrow R_i$ for free: just take the projection on the i-th component. With these morphisms, the following diagrams commute:

$$
\begin{array}{ccc}
R & \xrightarrow{\pi_j} & R_j \\
\downarrow{\pi_j^i} & & \downarrow{\pi_j^i} \\
R_i & \rightarrow & R_i
\end{array}
$$

In the case we are interested in, the $R_i = \mathbb{Z}/p^i\mathbb{Z}$ can be interpreted as discrete compact rings; thus the product $\prod R_i$ is compact by Tychonov, and since it can be shown that R is a closed subset of $\prod R_i$, the limit $R = \mathbb{Z}_p$ is a compact ring. The induced topology is called the profinite topology.

A very important case of projective limits are profinite groups: projective limits of finite groups. These play a major role in Galois theory: consider the field \mathbb{Q} and its set of finite normal extensions K/\mathbb{Q}; each such extension has its Galois group $\text{Gal} (K/\mathbb{Q})$. Moreover, if $K \subseteq L$, then there is a canonical projection $\text{res}_L^K : \text{Gal} (L/\mathbb{Q}) \longrightarrow \text{Gal} (K/\mathbb{Q})$ defined by restriction of automorphisms. The system of all such finite normal extensions together with the restriction maps from a projective system that is slightly more general than those considered above: the index set is not the set \mathbb{N}; the groups are indexed by the fields K. We can make the index set into a directed set by defining $K \leq L$ if $K \subseteq L$.
Note that a directed set is a partially ordered set (we have a relation \leq with the property that $i \leq j$ and $j \leq k$ imply $i \leq k$) such that for any pair i, j there exists an index k such that $i \leq k, j \leq k$.

The index set of all finite normal extensions of \mathbb{Q} is directed: if K and L are normal extensions, then so is the compositum KL, and we clearly have $K \leq KL$ and $L \leq KL$. The projective limit of this system is called the Galois group $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of the algebraic closure of \mathbb{Q}, or the absolute Galois group of \mathbb{Q}; the profinite topology on $G_{\mathbb{Q}}$ is called the Krull topology, and the main theorem of Galois theory also holds for infinite Galois extension if only closed subgroups of $G_{\mathbb{Q}}$ are used (in other words, the Galois correspondence is an inclusion reversing bijection between subfields of $\overline{\mathbb{Q}}$ and closed subgroups of $G_{\mathbb{Q}}$).

Finally, let us also give the definition of projective limits using the universal property: a projective system in a category C consists of a directed set I, a collection $(R_i)_{i \in I}$ of objects, together with morphisms $\pi_{ij} : R_j \rightarrow R_i$ for each pair $i \leq j$ such that

- $\pi_{ii} = \text{id}_{R_i}$,
- $\pi_{ij} \circ \pi_{jk} = \pi_{ik}$ whenever $i \leq j \leq k$.

An object R together with morphisms $\pi_i : R \rightarrow R_i$ is called a projective limit of the projective system if the following conditions are satisfied:

- $\pi_i = \pi_{ij} \circ \pi_j$ whenever $i \leq j$;
- if there is an object S and morphisms ψ_i such that $\psi_i = \pi_{ij} \circ \psi_j$ whenever $i \leq j$, then there exists a unique morphism $\psi : S \rightarrow R$ such that $\psi_i = \pi_i \circ \psi$.

Projective limits exist in the categories of abelian groups, of R-modules, and of rings.

Completions. We have seen above that the ring \mathbb{Z}_p of p-adic integers carries a profinite topology. With respect to this topology, the sequence $1, p, p^2, p^3, \ldots$ is a null sequence: it converges to 0. This observation gives us yet another way of constructing p-adic numbers, and this construction has the advantage of showing that the fields \mathbb{Q}_p and \mathbb{R} have a lot in common (note that \mathbb{R} does not contain a subring which is a projective limit of finite rings).

Recall the construction of the real numbers from \mathbb{Q}: consider the ring C of Cauchy sequences of rational numbers; the set N of null sequences is an ideal in C, and, as a matter of fact, a maximal ideal; the quotient ring $\mathbb{R} = C/N$ is therefore a field.

The same construction gives us the p-adic numbers \mathbb{Q}_p: all we have to do is replace the absolute value $| \cdot |$ you know from calculus by the p-adic valuation defined as follows: if you fix a prime p, then every rational number $r \neq 0$ can be
written uniquely in the form $r = p^a s$, where s is a fraction whose numerator and denominator are coprime to p. Now define $|r|_p = p^{-a}$, and $|0|_p = 0$. This has all the properties of the usual absolute value; as a matter of fact, not only is the triangle inequality $|r + s|_p \leq |r|_p + |s|_p$ true (which is essential for proving that Cauchy sequences form a ring), it actually holds in the stronger form
\[
|r + s|_p \leq \max\{|r|_p, |s|_p\}.
\]
Note that the sequence $1, p, p^2, p^3, \ldots$ is a null sequence with respect to $| \cdot |_p$ because $|1|_p = 1$, $|p|_p = \frac{1}{p}$, $|p^2|_p = \frac{1}{p^2}$, etc. Cauchy sequences of rational numbers form a ring C, and the set N of null sequences is a maximal ideal. Thus the ring $\mathbb{Q}_p = C/N$ is a field, the field of p-adic numbers. It has a subring \mathbb{Z}_p formed of Cauchy sequences of integers modulo null sequences.

Note that we can embed \mathbb{Q} into \mathbb{Q}_p by sending $a \in \mathbb{Q}$ to the Cauchy sequence a, a, a, \ldots; this embedding respects the ring structure, so \mathbb{Q} is a subfield of \mathbb{Q}_p, and \mathbb{Z} is a subring of \mathbb{Z}_p.

A nice feature of the p-adic topology is the fact that a sequence $\sum a_n$ converges in \mathbb{Q}_p if and only if (a_n) is a null sequence with respect to $| \cdot |_p$: this is a consequence of the stronger version of the triangle inequality.

Note that the p-adic absolute value $| \cdot |_p$ can be extended to the completion \mathbb{Q}_p by setting
\[
|a_{-N}p^{-N} + \ldots + a_0 + a_1 p + \ldots |_p = p^N;
\]
this clearly agrees with $| \cdot |_p$ on \mathbb{Q}.

The elements $u \in \mathbb{Z}_p$ with $|u|_p = 1$ are exactly the units; the set of elements divisible by p form a maximal ideal $p\mathbb{Z}_p$ in \mathbb{Z}_p, and we have $\mathbb{Z}_p/p\mathbb{Z}_p \simeq \mathbb{Z}/p\mathbb{Z}$.