Solution of HW #I by Mesut Sahin

Due Monday, Feb. 23, 2004

(1) Show that the map from the quartic $C_1: z^2 = x^4 + 1$ to the Weierstrass cubic $E_1: u^2 = v^3 - 4v$ is defined for all points of a field except finitely many. Show that the same is true for the inverse map. Thus the map $C_1 \to E_1$ is an example of a birational isomorphism (a map defined by rational functions, giving a bijection between the (complex) points on the curves except for finitely many exceptions).

Solution: Let (x, z) be a point of C_1. Then $z^2 = x^4 + 1$ holds, in other words, we have $1 = z^2 - x^4 = (z - x^2)(z + x^2)$. Let $t = z + x^2$, which yields that $\frac{1}{t} = z - x^2$. Thus we get

$$2x^2 = \frac{(t^2 - 1)}{t}$$

from which (multiplying both sides by $8t^2$) follows that

$$16x^2t^2 = 8t^3 - 8t.$$

Setting $u = 4xt$ and $v = 2t$ we obtain $u^2 = v^3 - 4v$, i.e. the equation of E_1. Thus the map $C_1 \to E_1$ can be defined by

$$u = 4x(z + x^2), v = 2(z + x^2).$$

Obviously it is rational (indeed, more than rational)1. By using the relations $(t = v/2, x = u/4t, z = t - x^2)$ above the converse map can be given by

$$x = \frac{u}{2v}, z = \frac{(2v^3 - u^2)}{4v^2}$$

unless $v = 0$. There is only one point (u, v) on E_1 where this map is not defined, namely the origin. Therefore C_1 and E_1 are birationally equivalent.

1These maps are called polynomial.
(2) Transform the Fermat quartic $C_2 : z^2 = x^4 - 4$ into Weierstrass form $E_2 : u^2 = v^3 + v$, and show that the map you find is a birational isomorphism.

Solution: Let (x, z) be a point of C_2. Then $z^2 = x^4 - 4$ holds, or we have $4 = x^4 - z^2 = (x^2 - z)(x^2 + z)$. Let $4t = z + x^2$, which implies that

$$\frac{1}{t} = x^2 - z.$$

So we get

$$2x^2 = \frac{(4t^2 + 1)}{t}$$

from which (multiplying both sides by $2t^2$) follows that

$$4x^2t^2 = 8t^3 + 2t.$$

Setting $u = 2xt$ and $v = 2t$ we obtain $u^2 = v^3 + v$, i.e. the equation of E_2. Thus the map $C_2 \to E_2$ can be defined by

$$u = \frac{x(z + x^2)}{2}, v = \frac{(z + x^2)}{2}.$$

Obviously it is rational (indeed, more than rational). By using the relations above the converse map can be given by

$$x = \frac{u}{v}, z = \frac{2v^3 - u^2}{v}$$

unless $v = 0$. There is only one point (u, v) on E_2 where this map is not defined, namely the origin. Therefore C_2 and E_2 are birationally isomorphic.

(3) Consider the two ‘curves’ $C_1 : X^4 + Y^4 = Z^2$ and $C_2 : X^4 - 4Y^4 = Z^2$ occurring in the proof of FLT for exponent 4. In our proof we started with a rational point (x, y, z) on C_1 and obtained a rational point (a, b, x) on C_2. Express x, y, z as rational functions of a, b, x; this defines a rational map $\phi : C_2 \to C_1$.

Is the rational map that you get birational (i.e., can the converse map $C_1 \to C_2$ be expressed using rational functions)?

Solution: In the proof of FLT for exponent 4 we found that $y^2 = 4ab$ and $z = a^4 + 4b^4$. So letting

$$X(a, b, x) = x, Y(a, b, x) = 2ab, Z(a, b, x) = a^4 + 4b^4$$
Elliptic Curves

3

gives us the rational map \(\phi : C_2 \to C_1 \). For the converse map there is only one candidate to be a rational map, namely the one given by

\[
a^4 = \frac{1}{2}(z + x^2), \quad b^4 = \frac{1}{8}(z - x^2), \quad x(x, y, z) = x.
\]

And there is no chance for this map to be a rational map. So \(C_1 \) and \(C_2 \) are not birationally equivalent.

(4) Consider the following diagram:

\[
\begin{array}{ccc}
C_2 & \longrightarrow & E_2 \\
\downarrow \phi & & \downarrow \\
C_1 & \longrightarrow & E_1
\end{array}
\]

Since the horizontal maps are (essentially) bijective, you can define a map \(\psi : E_2 \to E_1 \) (i.e. rewrite \(\phi \) in terms of the new coordinates \(u, v \)). Do this.

Solution: Let us consider the following diagram:

\[
\begin{array}{ccc}
E_2 & \overset{\psi}{\longrightarrow} & E_1 \\
\downarrow & & \uparrow \\
C_2 & \longrightarrow & C_1 \\
\downarrow \phi & & \uparrow \\
C_2 & \longrightarrow & C_1
\end{array}
\]

Now start with a point \((u, v) \neq (0, 0)\) on \(E_2 \), by second question we know that the point \((x, y) = \left(\frac{u}{v}, \frac{2v^3 - u^2}{v} \right)\) lies on \(C_2 \). Let

\[
x = \frac{X}{Y}, \quad z = \frac{Z}{Y^2}
\]

where \(Y \neq 0 \). Then it is "pretty" obvious that for any point \((x, y)\) on \(C_2 \) there corresponds a point \((X, Y, Z)\) on \(C_2 \), in other words, \(z^2 = x^4 - 4 \) implies that \(X^4 - 4Y^4 = Z^2 \). And this point, by the third question, is mapped to the point

\[
(X', Y', Z') = (Z, 2XY, X^4 + 4Y^4)
\]

on \(C_1 \), i.e. \(Z'^2 = X'^4 + Y'^4 \). By defining

\[
x' = \frac{X'}{Y'}, \quad z' = \frac{Z'}{Y'^2}
\]
where \(Y' \neq 0 \) we obtain the point \((x', y')\) on \(C_1 \) corresponding to \((x, y)\). By the first question we will obtain the point \((u', v')\) on \(E_1 \), as a rational function of \(u \) and \(v \). To write this function down we use the following relations:

\[
x' = \frac{X'}{Y'} = \frac{Z}{2XY} = \frac{2v^3 - u^2}{2uv},
\]

\[
z' = \frac{Z'}{Y'^2} = \frac{X^4 + 4Y^4}{4X^2Y^2} = \frac{u^3 + 4v^4}{4u^2v^2}.
\]

By inserting these into the following equations we get the result:

\[
u' = 4(x'z' + x^3) = \frac{(2v^3 - u^2)(u^4 + 4v^4)}{2u^3v^3} + \frac{(2v^3 - u^2)^3}{2u^3v^3}
\]

\[
v' = 2(z' + x^2) = \frac{(2v^3 - u^2)^2 + (u^4 + 4v^4)}{2u^2v^2}
\]

which defines the rational function \(\psi \) on \(E_2 \) (except the origin).

Comments. [FL] This mess can be simplified considerably using the relation \(u^2 = v^3 + v \). In fact,

\[
v' = \frac{(2v^3 - u^2)^2 + (u^4 + 4v^4)}{2u^2v^2} = \frac{2u^4 - 4u^2v^3 + 4v^4 + 4v^6}{2u^2v^2}
\]

\[
= \frac{u^4 - 2u^2v^3 + 2v^3(v + v^3)}{u^2v^2} = \frac{u^4 - 2u^2v^3 + 2v^3u^2}{u^2v^2} = \frac{u^2}{v^2}.
\]

Similarly,

\[
u' = \frac{2v^3 - u^2 (u^4 + 4v^4) + (u^2 - 2v^3)^2}{u(2v^3 - u^2)} = \frac{u(v - v^3)}{v^3} = \frac{u(v^2 - 1)}{v^2}.
\]

(5) Show that \(7 = a^3 + b^3 \) for some positive rational numbers. Hint: starting with the point \(P = (2, 1) \) on the cubic \(C : x^3 - y^3 = 7 \), construct the tangent to \(C \) at \(P \) and compute their point of intersection \(Q \neq P \).

Solution: The equation of the tangent line \(L \) to

\[C : f(x, y) = x^3 - y^3 - 7 = 0 \]

at \((2, 1)\) is given by

\[
\frac{\partial f}{\partial x}|_{(2,1)} (x - 2) + \frac{\partial f}{\partial y}|_{(2,1)} (y - 1) = 0
\]
which can be arranged as $L : y = 4x - 7$. By Bezout’s Theorem the number of intersection points of ”C and L” is 3 counting with multiplicity. Since this line is tangent to C at $(2,1)$ the intersection multiplicity of ”L and C” at $(2,1)$ is 2. Let us now find the third intersection point by plugging $y = 4x - 7$ into the equation $x^3 - y^3 = 0$. Then the equation becomes

$$-63x^3 + 336x^2 - 588x + 336 = (x - 2)^2(63x - 84) = 0$$

Thus $x = \frac{4}{3}$ is one component of $Q \neq P$, and the other is $y = 4x - 7 = -\frac{5}{3}$. So we conclude that, for rational numbers $a = \frac{4}{3}$ and $b = \frac{5}{3}$ the equation $a^3 + b^3 = 7$ is satisfied.