Quiz 06

Name

(1) The graph of \(y = x^2 \) between \(x = 0 \) and \(x = 2 \) is rotated around
(a) the \(x \)-axis;
(b) the \(y \)-axis.
Compute the volumes of the resulting solids.

a) Using cross sections, the volume is

\[
V = \pi \int_0^2 x^4 \, dx = \frac{32}{5} \pi.
\]

Using shells, we integrate in the \(y \)-direction. The radius is just \(y \), the height is \(2 - x = 2 - \sqrt{y} \), hence

\[
V = 2\pi \int_0^4 y(2 - \sqrt{y}) \, dy = \frac{32}{5} \pi.
\]

b) Using shells, the radius is \(x \), the height is \(y = x^2 \), so the volume is

\[
V = 2\pi \int_0^2 x^3 \, dx = 8\pi.
\]

Using cross sections, you can subtract the volume of the paraboloid from the volume of the big cylinder, which is 16\(\pi \). The volume of the paraboloid is \(\pi \int_0^4 y \, dy = 8\pi \), hence \(V = 16\pi - 8\pi = 8\pi \).