(1) Let \(y = f(x) \) be a differentiable function with \(f(0) = 0 \) such that its length between \(x = 0 \) and \(x = a \) is given by \(L = \sqrt{2a} \) for all \(a > 0 \). Determine all functions \(f \) with this property.

(2) A 1 m wire is used to make a square and an equilateral triangle. Find the minimal and maximal possible areas.

(3) Find \(f(4) \) if \(\int_0^4 f(x) \, dx = x \cos \pi x \).

(4) The graph \(y = \sqrt{x} \) and the lines \(x = \frac{1}{2}, \ y = 0, \) and \(y = 1 \) cut out two regions, which are rotated about \(x = \frac{1}{2} \) to generate a solid. Compute its volume.

(5) Compute \(\int \sqrt{\frac{x-1}{x^2}} \, dx \).