Consider a Cartesian coordinate system S with unit vectors $\hat{i}, \hat{j},$ and \hat{k} directed along the three axes $x, y,$ and $z,$ respectively. Any vector \vec{A} in this system can be expressed as

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$ \hspace{1cm} \text{(1)}$$

where its Cartesian components are given by

$$A_x = \vec{A} \cdot \hat{i}, \quad A_y = \vec{A} \cdot \hat{j}, \quad A_z = \vec{A} \cdot \hat{k}$$

Suppose that we rotate this system about the z axis through an angle ϑ. The new set of axes in the rotated frame S' are x', y', and z'; where the corresponding set of new unit vectors denoted by $\hat{i}', \hat{j}',$ and \hat{k}'.

To set up the relations between the primed unit vectors $\{\hat{i}', \hat{j}', \hat{k}'\}$ and $\{\hat{i}, \hat{j}, \hat{k}\}$ we refer to eq.(1), where we replace the "any vector \vec{A}" therein successively by $\hat{i}', \hat{j}',$ and \hat{k}'. Letting \vec{A} stand for \hat{i}', for instance, we write

$$\hat{i}' = (\hat{i}' \cdot \hat{i}) \hat{i} + (\hat{i}' \cdot \hat{j}) \hat{j} + (\hat{i}' \cdot \hat{k}) \hat{k}$$

Similarly, we obtain

$$\hat{j}' = (\hat{j}' \cdot \hat{i}) \hat{i} + (\hat{j}' \cdot \hat{j}) \hat{j} + (\hat{j}' \cdot \hat{k}) \hat{k}$$

and

$$\hat{k}' = (\hat{k}' \cdot \hat{i}) \hat{i} + (\hat{k}' \cdot \hat{j}) \hat{j} + (\hat{k}' \cdot \hat{k}) \hat{k}$$

Noting that

$$\hat{i}' \cdot \hat{i} = \hat{j}' \cdot \hat{j} = \cos \vartheta, \quad \hat{i}' \cdot \hat{j} = \cos(\pi/2 - \vartheta), \quad \hat{j}' \cdot \hat{i} = \cos(\pi/2 + \vartheta)$$

we write

$$\hat{i}' = \cos \vartheta \hat{i} + \sin \vartheta \hat{j}$$

$$\hat{j}' = -\sin \vartheta \hat{i} + \cos \vartheta \hat{j}$$

$$\hat{k}' = \hat{k}$$
Note that vector \vec{A}, eq.(1), having components A_x, A_y, A_z in the original system S should look somewhat different with modified components A_x', A_y', A_z' as viewed in the new rotated frame S', i.e., one writes

$$\vec{A}' = A_x' \hat{i}' + A_y' \hat{j}' + A_z' \hat{k}'$$

Actually, this vector does not change neither in magnitude nor in direction. Whether viewed in S or S', it remains the same. What makes up the difference is the orientation of the coordinate axes. Thus, having $\vec{A}' = \vec{A}$, we write

$$A_x' \hat{i}' + A_y' \hat{j}' + A_z' \hat{k}' = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Forming a scalar product of each of the six terms in the above equation by \hat{i}' one obtains

$$A_x' = A_x (\hat{i}' \cdot \hat{i}) + A_y (\hat{i}' \cdot \hat{j})$$

$$= A_x \cos \vartheta + A_y \sin \vartheta$$

Similarly one gets

$$A_y' = A_x (\hat{j}' \cdot \hat{i}) + A_y (\hat{j}' \cdot \hat{j})$$

$$= A_x (- \sin \vartheta) + A_y \cos \vartheta$$

and

$$A_z' = A_z$$

Using the above relations one can easily show that

$$A_x'^2 + A_y'^2 + A_z'^2 = A_x^2 + A_y^2 + A_z^2$$

Thus, the conclusion reached here is that the magnitude of \vec{A} remains invariant under a rotation of coordinate axes. In a similar manner one should also expect the dot product $\vec{A} \cdot \vec{B}$ to remain the same if the coordinate axes are rotated; simply because the dot product of any two vectors is a scalar.