1: Find the generating function for the recurrence relation

\[a_{n+2} = a_{n+1} + a_n + \frac{1}{n!} \]

with initial conditions \(a_0 = a_1 = 0 \). (Express your answer in a simple form, without any infinite sums. You are NOT required to solve the recurrence relation.)

2: For each integer \(n \geq 0 \), let \(s_n \) be the number of \(n \)-digit sequences where each digit is 0 or 1 or 2, and there are no consecutive 0 digits. (For example, when \(n = 2 \), there are eight possible sequences: 01, 02, 10, 11, 12, 20, 21, 22.) Find a formula for \(s_n \) in terms of \(n \).

3: For an integer \(n \geq 2 \), the graph \(K_n \) is the graph with \(n \) vertices where any two distinct vertices are connected by an edge.

(a) For which values of \(n \) does \(K_n \) have an Euler circuit?

(b) For which values of \(n \) does \(K_n \) have an Euler path which is not an Euler circuit.

(c) Repeat the question for the graph that is obtained from \(K_n \) by deleting one edge.

4: Show that, for any graph with at least two vertices, there exist two different vertices \(x \) and \(y \) which have the same degree as each other.

5: Let \(G \) be a connected planar graph with \(v \) vertices. Let \(d \) be a positive integer and suppose that every vertex of \(G \) has degree \(d \). Show that \(v \) and \(d \) cannot both be odd.