Problem Of The Month

November 2009

Problem:

Suppose that the set of all natural numbers \(N \) is partitioned into 3 pairwise disjoint infinite sets \(A, B \) and \(C \): \(A \cup B \cup C = N \). Prove that there are infinitely many triples \(a \in A, b \in B \) and \(c \in C \) such that \(a, b \) and \(c \) are sides of some triangle.

Solution:

Assume that there are only finitely many triples \(a \in A, b \in B \) and \(c \in C \) such that \(a, b \) and \(c \) are sides of some triangle. Since the sets \(A, B \) and \(C \) are infinite, there exist natural numbers \(a_1 \in A, b_1 \in B \) and \(c_1 \in C \) exceeding all these triangle sides and satisfying \(1 < a_1 < b_1 < c_1 \). Obviously, there is a triangle with sides \(a_1, c_1, c_1 + 1 \), as well as a triangle with sides \(b_1, c_1, c_1 + 1 \). Therefore, by assumption, \(c_1 + 1 \in C \). By repeating this argument, we get that all natural numbers exceeding \(c_1 \) belong to \(C \), and as a consequence the sets \(A \) and \(B \) are finite. A contradiction.