1) Find two linearly independent solutions of \(x^2 y'' + x(1-x)y' - (1+3x)y = 0, x > 0. \)

2) Consider \(x^2 y'' + (3x-1)y' + y = 0. \)
 a) Show that the origin is the irregular singular point of the differential equation.
 b) Obtain solutions of the differential equation for large \(x. \)
 Hint: Put \(x = \frac{1}{w}. \)

3) Solve the problem \(y'' + 2y' + y = t, y(0) = -3, y(1) = -1, \) using the Laplace transform method.

4) Solve \(y'' + 4y = \begin{cases} 4t & 0 \leq t \leq 1 \\ 4 & t > 1 \end{cases}, y(0) = 1, y'(0) = 0 \) using the Laplace transform technique.

5) If \(f(t) \) is to be continuous for \(t \geq 0 \) and \(\mathcal{L}^{-1}\left\{ \frac{e^{-3s}}{(s+1)^2} \right\} \) evaluate \(f(2), f(5), f(7). \)