Fall 2008 Midterm I

1) Evaluate the following limits: (Do not use L’Hôpital’s Rule.)

a) \[\lim_{x \to 9} \frac{\sqrt{x} - 3}{x^3 - 82x + 9} \]

b) \[\lim_{x \to 2} \frac{1 + \sin(3\pi/x)}{(x - 2)^2} \]

2) Consider the limit \[\lim_{x \to 2} \frac{\ln(x) - 2 \ln(2)}{x - 2} \].

a) Interpret this limit as the derivative \(f'(a) \) of a function \(f(x) \) at a point \(x = a \).

b) Compute the limit using the interpretation in part (a).
3) Suppose that \(f(1) = 1, \ f'(1) = 2, \ f''(1) = -5 \), and that \(y \) is a differentiable function satisfying the equation \(f(y^2x) = 2yf(x) - 1 \). Find \(\frac{d^2y}{dx^2} \bigg|_{(x,y)=(1,1)} \).

4a) A differentiable parametric curve \(x = f(t), \ y = g(t) \) satisfies \(\frac{dy}{dx} = \sqrt{t^2 + 1}\cos(\pi t) \). If \(\frac{d^2y}{dx^2} \bigg|_{t=3/4} = 2 \), find \(\frac{dy}{dt} \bigg|_{t=3/4} \).

4b) Show that there is a real number \(c \) such that the tangent line to the graph of \(u(x) = x^3 - x \) at the point \((c, u(c)) \) and the tangent line to the graph of \(v(x) = e^{-x^2} \) at the point \((c, v(c)) \) are perpendicular to each other.

5) In each of the following if there exists a function \(f \) whose domain is the entire real line and that satisfies the given condition, give an example of such a function; otherwise just write \textbf{Does NOT Exist} inside the box. No further explanation is required.

\(\text{a) } \lim_{x \to 0} xf(x) = 0 \) and \(\lim_{x \to 0} f(x) = \infty \).

\(\text{b) } \lim_{x \to \infty} f(x) = 0 \), but \(\lim_{x \to -\infty} f(1/x) \) does not exist.

\(\text{c) } \lim_{h \to 0} \frac{f(h) - f(-h)}{h} \) exists, but \(f'(0) \) does not exist.

\(\text{d) } f'(0) \) exists, but \(f \) is not continuous at \(x = 0 \).

\(\text{e) } f(x)f'(x) < 0 \) for all \(x \).

\[\text{Fall 2008 Midterm II} \]

1) Evaluate the following limits:

\(\text{a) } \lim_{x \to 0} \frac{\cos^2(x) - \cos(\sqrt{2}x)}{x^4} \)

\(\text{b) } \lim_{x \to \infty} \left(\frac{2}{\pi} \arctan x \right)^x \)

2a) One morning of a day when the sun will pass directly overhead, the shadow of an 40-m building is 30 m long. At the moment in question, the angle the sun makes with the ground is increasing at the rate of \(0.27^\circ/\text{min} \). At what rate and how is the length of the shadow changing?

2b) Find \(y(x) \) if \(\frac{dy}{dx} = e^x - e^{-x} \) and \(y(0) = 0 \).

3) Sketch the graph of the function \(y = e^{-x^2/2}(x^2 + 4x + 3) \) by computing \(y' \) and \(y'' \), and determining their signs; finding the critical points, the inflections points, the intercepts, and the asymptotes; and clearly labeling them in the picture.
4) A hangar consisting of two quarter-spheres joined by a half-cylinder, and having a volume of $2000\pi/3$ m3 will be designed. If the construction cost for the unit area of the spherical parts is $3/4$ of the construction cost of the unit area of the cylindrical part, find the dimensions of the least expensive hangar that can be built.

5) Determine the number of solutions of the equation $e^x = kx$ for each value of the positive constant k.

Fall 2008 Final

1) Show that $x \geq \ln(1 + x) \geq \frac{x}{1 + x}$ for all $x > -1$.

2) Evaluate the following limits.
 a) $\lim_{x \to 0} \frac{x^3 - \sin^3 x}{\sin(x^3)}$
 b) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{2k - 1}{(2k - 1)^2 + n^2}$

3a) The radius of a vase at a height of h cm from its base is $r(h) = \frac{1}{2}(h + 3)e^{-h/5} + 2$ cm. If the water is running into the vase at a rate of 150 cm3/sec, how fast is the level of water changing at the moment when it is 10 cm deep?

3b) Find the area of the surface generated by revolving the curve $y = \sqrt{x}, \ 0 \leq x \leq 1$, about the x-axis.

4a) Evaluate the integral $\int_{0}^{\pi/3} \frac{\sin x \, dx}{2\sin^2 x + 3\cos x}$.

4b) Evaluate the integral $\int_{0}^{1} x(f(x)f''(x) + (f'(x))^2) \, dx$ if $f(0) = 3, \ f'(0) = -5, \ f''(0) = 2, \ f(1) = 7, \ f'(1) = 4, \ f''(1) = -1$.

5a) Show that the improper integral $\int_{1}^{\infty} e^{-a(x + \frac{1}{x})} \, dx$ converges for all positive values of the constant a.

5b) Show that $\int_{1}^{\infty} e^{-a(x + \frac{1}{x})} \, dx = \frac{e^{-2a}}{a} + \int_{0}^{1} e^{-a(x + \frac{1}{x})} \, dx$ for all $a > 0$.

Fall 2007 Midterm I
1) Define the function \(f \) as below
\[
\begin{align*}
f(x) &= \begin{cases}
\cos x - 1 \quad &\text{for } x \neq 0, \\
0 \quad &\text{for } x = 0.
\end{cases}
\end{align*}
\]
a) Is the function \(f \) continuous at \(x = 0 \)? *(Don’t use L’Hôpital’s rule.)*

b) Find \(f'(0) \) if it exists. *(Don’t use L’Hôpital’s rule.)*

2a) Define \(g(x) = x^2 - \cos x \). Show that there exists a number \(c \) in \((0, \pi/2)\) such that \(g(c) = -1/2 \).

2b) Show that the function \(p(x) = x^3 - 3x + 1 \) has all its three roots in \([-2, 2]\).

3a) Let \(a \), \(b \) and \(c \) be constants. Define
\[
f(x) = \begin{cases}
\cos x \quad &\text{for } x \leq 0, \\
a + bx + cx^2 \quad &\text{for } x > 0.
\end{cases}
\]
Find \(a \), \(b \), \(c \) so that \(f'''(0) \) (the third derivative of \(f \) at \(x = 0 \)) exists. Does \(f^{(4)}(0) \) (the fourth derivative of \(f \) at \(x = 0 \)) exist?

3b) Find the horizontal and vertical asymptotes of the curve
\[
y = \frac{3x^2 - 1 + 2\sin x}{x^2 - 1}.
\]

4) Let \(f \) be a differentiable function on \((-5, 10)\). Assume
\[
f\left(\frac{5}{2}\right) = 10, \quad f\left(\frac{3}{2}\right) = 0, \quad \text{and} \quad f'\left(\frac{3}{2}\right) = 3.
\]
a) Find \(\lim_{x \to 3} \left(3 + f\left(x - \frac{1}{2}\right) \right) \). *(Explain!)*

b) Find \(\lim_{x \to 1} \frac{f\left(x + \frac{1}{2}\right)}{x - 1} \). *(Explain!)*

5a) Let a curve \(C \) be defined through the equation \(x + \sin(xy) = y \). Find an equation of the tangent line and an equation of the normal line of \(C \) at the point \((0, 0)\).

5b) If one perpendicular side of a right triangle decreases at 1 cm/min and the other perpendicular side increases at 2 cm/min then how fast is the length of the hypotenuse changing at the time where the first perpendicular side is 8 cm and the other one is 4 cm long?
1a) Evaluate \(\lim_{x \to 0} \frac{1}{x} \int_0^{\sin 2x} \cos 5t \, dt \).

1b) A hallway of width 4 ft meets a hallway of width \(12\sqrt{3} \) ft at a right angle. Find the length of the longest ladder that can be carried horizontally around the corner from one hallway to the other hallway. (i. While solving this problem, to find the global extrema of a function that is not defined on a closed interval you have to use the first derivative test or the second derivative test.) (ii. Find the exact answer.)

2) Define a function \(f \) as follows
\[
f(x) = \frac{x^2}{x^2 - 4}.
\]
You have to explicitly write the answer to each part.

 a) Find the domain of the function \(f \).

 b) Find all asymptotes, the \(x \)-intercept(s) and the \(y \)-intercept(s) of the graph of \(f \).

 c) Find \(f'(x) \) and \(f''(x) \).

 d) Find the intervals on which the function \(f \) is increasing and decreasing. Identify the function’s local extreme values, if any, saying where they are taken on.

 e) Find where the graph of \(f \) is concave up and where it is concave down. Are there any inflection points on the graph of \(f \)?

 f) Sketch the graph of \(f \).

3a) Calculate the following limit \(\lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^{n} i^2 \sin \left(5 + \frac{\pi i^3}{n^3} \right) \).

3b) Calculate \(\int \frac{\sin 2x}{3 + 2 \cos^2 x} \, dx \).

4) Let \(f \) be a continuous function on \([2, 5]\). Assume that
\[
f(7 - x) = f(x) \neq 0
\]
for all \(x \) in \([2, 5]\) and
\[
\int_{\frac{5}{3}} f(u) \, du = 26.
\]
We define
\[
F(x) = \int_{\frac{4}{3}}^{x} f(u) \, du \quad \text{and} \quad G(x) = \int_{\frac{3}{2}}^{x} f(u) \, du
\]
for all \(x \) in \([2, 5]\).

 a) Show that \(G \) is an increasing function on \([2, 5]\).

 b) Show that there exists only one number \(c \) in the interval \([2, 5]\) such that \(F(c) = 0 \).

 c) Calculate \(F(2) + G(4) \).
5a) Find the volume of the solid generated by revolving the region bounded by the curves \(x = \ln y \), \(y = e^{2x} \), and \(x = \ln 2 \) about the \(x \)-axis.

5b) Find the surface area of the solid generated by revolving the curve \(y = \sqrt{2x - x^2} \) for \(1 \leq x \leq 3/2 \).

Fall 2007 Final

1a) Is there any real number that is one less than its cube? Explain and support your answer with well known theorems.

1b) Prove that \(|xe^{-x^2} + \cos x - \sin x| < \frac{1+2\sqrt{2}}{2}\) for all \(x \) in \((-\infty, \infty)\).

2a) Show that \(\int_{0}^{\pi/2} \sin^{2n} x \, dx = \frac{2n-1}{2n} \int_{0}^{\pi/2} \sin^{2n-2} x \, dx \) where \(n \) is a positive integer.

2b) Show that \(\int_{0}^{\pi/2} \sin^6 x \, dx = \frac{1 \cdot 3 \cdot 5 \pi}{2 \cdot 4 \cdot 6 \cdot 2} = \frac{5\pi}{32} \).

2c) Show that \(\int_{0}^{\pi/2} \sin^{2n} x \, dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1) \pi}{2 \cdot 4 \cdot 6 \cdots (2n)} \) (for any integer \(n > 0 \)).

3a) Find \(\lim_{x \to \infty} \left(\frac{x + a}{x - a} \right)^x \) where \(a \) is a nonzero real number.

3b) Find \(\lim_{n \to \infty} \frac{1}{n^{r+1}} \sum_{k=1}^{n} k^r \) where \(r \) is a real number greater than 1.

3c) Find \(\lim_{n \to \infty} \frac{1}{n^{r+2}} \sum_{k=1}^{n} k^r \) where \(r \) is a real number greater than 1.

4) Evaluate the following integrals.

a) \(\int_{\sqrt{\pi}}^{e} \frac{\sin^{-1}(\ln x)}{x} \, dx \)

b) \(\int \frac{x - 1}{x(x + 1)^2} \, dx \)

c) \(\int_{-\infty}^{0} 2^{3x} \, dx \)

5a) Show that the linearization \(L(x) \) of \(e^x \) about \(x = 0 \) is \(L(x) = x + 1 \).

5b) Let \(L(x) \) be the linearization of a function \(f \) at \(x = 2 \). Assume that the function \(f'' \) is continuous on \((1, 4)\) and the graph of \(y = f(x) \) is concave up on \((0, 5)\). Define a function \(h \) as follows: \(h(x) = f(x) - L(x) \) for all \(x \) in \((1, 3)\).
i) Identify the intervals on which \(h \) is increasing and decreasing.

ii) Determine the concavity of graph \(y = h(x) \).

iii) Find, if any, absolute extreme values of the function \(h \).

Fall 2006 Midterm I

1) Evaluate the following limits. (*Do not use L'Hôpital's Rule.*)

 a) \(\lim_{x \to 1} \frac{x^2 - 4x + 3}{\sqrt{x} - 1} \)

 b) \(\lim_{x \to \infty} (x + 2) \sin \left(\frac{2}{x + 1} \right) \)

2a) Find the equations of the tangent lines to the curve \(y = 2x^3 - 3x^2 - 12x + 20 \) which are perpendicular to the line \(y = 1 - x/24 \).

2b) Find \(\frac{d^2y}{dx^2} \) at \(t = \pi/3 \) if \(x = t - \sin t \) and \(y = 1 - \cos t \).

3a) Evaluate \(g'(0) \) and \(g''(0) \) if \(g(x) = \sec(x^2 + 5x) \).

3b) If \(f(1) = -3 \), \(f'(1) = 4 \) and if \(y = f(xy^2 + f(x^2)) + 5 \) defines \(y \) as a differentiable function of \(x \), determine \(\frac{dy}{dx} \) at the point \((x, y) = (1, 2) \).

4) In each of the following if there exists a function \(f \) whose domain is the entire real line and which satisfies the given condition, then give an example of such a function; otherwise just write DOES NOT EXIST inside the box. No further explanation is required.

 a) \(f(x) \) is not continuous at \(x = 4 \), but \((f(\sqrt{x}))^2 \) is continuous at \(x = 4 \).

 b) \(f(x) \) is not continuous at \(x = 1 \), but \((f(x))^2 \) is continuous at \(x = 1 \).

 c) \(\lim_{x \to 0} f(x) \) does not exist, but \(\lim_{x \to 0} f(x^2) \) exists.

 d) \(\lim_{x \to 0} \frac{f(x) - f(0)}{x} \) exists, but \(f \) is not differentiable at \(0 \).

 e) \(f \) is continuous and \(f(x)f(x + 1) < 0 \) for all \(x \).

5) For each of the following functions determine if there is a positive constant \(C \) such that for all \(0 < \varepsilon < 1 \) and for all \(x \),

\[
|x| < C\varepsilon \implies |f(x)| < \varepsilon .
\]

In particular, if such \(C \) exists, find one; if such \(C \) does not exist, explain why not.

 a) \(f(x) = x^2 + 5x \)
b) \(f(x) = x^{1/3} \)

Fall 2006 Midterm II

1a) Evaluate the integral \(\int_0^1 t \sin^2(\pi(t^2 + 1)) \, dt \).
1b) Find the area of the region enclosed by the curves \(y = 2x^3 - x^2 - 5x \) and \(y = x^2 - x \).

2a) Evaluate the limit \(\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^2}{(n+k)^3} \).
2b) Show that the equation \(x^5 + x^3 - 3x^2 + 3x + 7 = 0 \) has exactly one real root.

3a) Let \(f(x) = \frac{1}{x} \int_0^x \sin(t^2) \, dt \) for \(x > 0 \). If \(A = f(\sqrt{\pi/2}) \), express \(f'(\sqrt{\pi/2}) \) in terms of \(A \).
3b) Show that if \(g \) is a twice differentiable function such that \(g(0) = 1 \), \(g'(0) = -1 \), \(g(1) = 2 \), \(g'(1) = 5 \), and \(g''(x) \geq 0 \) for all \(x \), then \(g(x) \geq 1/3 \) for all \(0 \leq x \leq 1 \).

4) Find the smallest possible total surface area for a cone circumscribed about a sphere of radius \(R \).

5) Sketch the graph of \(y = \frac{x^3}{x^2 - 1} \) by finding \(y', y'' \); determining their signs; finding and classifying the critical points, the inflection points and the intercepts; and finding the asymptotes.

Fall 2006 Final

1) Evaluate the following integrals.
 a) \(\int \frac{1 + e^x}{1 - e^x} \, dx \)
 b) \(\int \frac{dx}{x^2 \sqrt{x^2 + 4}} \)

2) Evaluate the following integrals.
 a) \(\int_{-1/2}^{1/2} \frac{dt}{t + \sqrt{1 - t^2}} \)
 b) \(\int_{-1/2}^{1/2} \sqrt{\frac{1-x}{1+x}} \arcsin x \, dx \)
3) Consider the region bounded by the parabolas \(y = 4x - x^2 \) and \(y = x^2 - 8x + 12 \). Express the following volumes in terms of definite integrals, but do not evaluate.

 a) The volume of the solid generated by revolving this region about the \(y \)-axis.

 b) The volume of the solid generated by revolving this region about the \(x \)-axis.

4a) Express \(\int_0^1 x^2 f''(x) \, dx \) in terms of \(k = \int_0^1 f(x) \, dx \) if \(f'(1) = 2f(1) \) and \(f'' \) is continuous.

4b) Prove that \(\frac{\pi}{6} < \frac{\int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}}} < \frac{\pi}{4\sqrt{2}} \).

5a) Find constants \(A \) and \(B \) such that the limit \(\lim_{x \to \infty} x^3 \left(A + \frac{B}{x} + \arctan x \right) \) exists.

5b) Let \(f(x) = x^{1/2} \) for \(x > 0 \). Find the absolute maximum value of \(f \).

Fall 2005 Midterm I

1) Evaluate the following limits:

 a) \(\lim_{x \to \infty} \left(\sqrt{x^3 + x^2} - x \right) \)

 b) \(\lim_{x \to 5/2} \frac{\cos \pi x}{8x^3 - 16x^2 - 25} \)

2) Assume that \(\lim_{x \to 0^+} f(x) = A \) and \(\lim_{x \to 0^-} f(x) = B \) where \(A \) and \(B \) are real numbers. In each of the following, if possible, express the limit in terms of \(A \) and \(B \); otherwise, write CANNOT BE DONE in the box. No further explanation is required.

 a) \(\lim_{x \to 0^+} f(x^2 - x) \)

 b) \(\lim_{x \to 0^-} f(x^2 - x) \)

 c) \(\lim_{x \to 0^-} (f(x^2) - f(x)) \)

 d) \(\lim_{x \to \infty} f((x^2 - x)^{-1}) \)

 e) \(\lim_{x \to \infty} f(x^{-2} - x^{-1}) \)

 f) \(\lim_{x \to 1^-} f(x^{-2} - x^{-1}) \)

3a) Let \(f \) be a differentiable function such that \(f(1) = 1 \) and the slope of the tangent line to the curve \(y = f(xf(xy))^2 \) at the point \((1,1)\) is 3. Find all possible values of \(f'(1) \).
3b) Show that if \(u \) is differentiable at 0, then the limit

\[
\lim_{t \to 0} \frac{u(3t) - u(-2t)}{t}
\]

exists.

4a) The angle of elevation from a point 3 m away from the base of a flag pole to its top is 60° ± 1°. Estimate the error in the height of the pole calculated from this measurement.

4b) Suppose that a drop of mist is a perfect sphere and that, through condensation, the drop picks up moisture at a rate proportional to its surface area. Show that under these circumstances the drop’s radius increases at a constant rate.

5) Consider the function \(f(x) = x^{4/3} - x - x^{1/3} \).

 a) Find the absolute maximum value and the absolute minimum value of \(f \) on the interval \([-1, 6]\).

 b) Determine the number of solutions of the equation \(f(x) = 0 \).

Fall 2005 Midterm II

1) Find the closest point on the curve \(y = x^2 \) to the point \((0, 1)\)

2) Evaluate the limit: \(\lim_{x \to 0} \frac{x \int_0^x \sin(t^2) \, dt}{\sin(x^4)} \).

3) Let \(a \) be a positive constant. Consider the region bounded by the parabola \(y = a(x - x^2) \) and the \(x \)-axis in the first quadrant. Let \(V \) be the volume of the solid generated by revolving this region about the \(x \)-axis. Let \(W \) be the volume of the solid generated by revolving this region about the \(y \)-axis. Find all values of \(a \) for which \(V = W \).

4) Evaluate the following integrals:

 a) \(\int_0^1 x^5 \sqrt{x^3 + 1} \, dx \)

 b) \(\int \tan^2 x \, dx \)
5a) True or false? No explanation is required.
\[\int x^2 \, dx = \frac{x^3}{3} + C \]
True □ False □
\[\int (5x - 7)^2 \, dx = \frac{(5x - 7)^3}{3 \cdot 5} + C \]
True □ False □
\[\int \sin^2 x \, dx = \frac{\sin^3 x}{3 \cos x} + C \]
True □ False □

5b) Determine all differentiable functions \(f \) which satisfy
\[\int (f(x))^2 \, dx = \frac{(f(x))^3}{3f'(x)} + C . \]

Fall 2005 Final

1) Find \(y' \). (Do not simplify!)
 a) \(y = (x^2 + 1)(x^3 + 1) \)
 b) \(y = \frac{x^2 + 1}{x^3 + 1} \)

2) Evaluate the following limits:
 a) \(\lim_{x \to \infty} x (2^{1/x} - 1) \)
 b) \(\lim_{x \to 0} (\cos x)^{1/x^2} \)

3) Evaluate the following integrals:
 a) \(\int_0^1 \arctan x \, dx \)
 b) \(\int_0^{\pi/4} \tan^5 x \sec^4 x \, dx \)

4) Sketch the graph of \(y = \frac{\ln x}{x} \) by finding \(y' \), \(y'' \), determining their signs, finding and classifying the critical points, the inflection points and the intercepts, and finding the asymptotes.

5) Assume that as an ice cube melts it retains its cubical shape, and its volume decreases at a rate that is proportional to its surface area. If the cube loses 1/4 of its volume during the first hour, how long will it take for the entire ice cube to melt?

Fall 2004 Midterm I
1) Evaluate the following limits: (Do not use L'Hôpital’s Rule.)

\(\lim_{x \to 5} \frac{x^3 - 24x - 5}{x^3 - 2x^2 - 75} \)
\(\lim_{x \to 8} \frac{1 - \cos(x^{1/3} - 2)}{(x - 8)^2} \)

2) Find \(\frac{d^2y}{dx^2} \) at the point \((x, y) = (1, -1)\) if \(y \) is a differentiable function of \(x \) satisfying \(y^3 + x^2y + x = x^3 + 2y \).

3a) Show that \(\lim_{x \to 3} \frac{1}{x - 1} = \frac{1}{2} \) using the \(\varepsilon-\delta \) definition of the limit.

3b) Suppose that for all \(0 < \varepsilon < 1 \),

\[|x - 1| < \frac{\varepsilon^2}{4} \implies |f(x) - 3| < \varepsilon \]

and

\[|x - 1| < \frac{\varepsilon}{35} \implies |g(x) - 4| < \varepsilon \]

Find a real number \(\delta > 0 \) such that

\[|x - 1| < \delta \implies |f(x) + g(x) - 7| < \frac{1}{5} \]

4a) Show that the equation \(x^4 + 1 = 7x^3 \) has at least 2 real roots.

4b) Find \(\frac{dy}{dx} \) if \(y = \sin^7(\cos(x^5)) \).

5) In each of the following if there exists a function \(f \) whose domain is the entire real line and which satisfies the given condition, then give an example of such a function; otherwise just write \text{Does Not Exist}. No further explanation is required.

\(\lim_{x \to 1} f \left(\frac{x - 1}{x + 1} \right) \neq f(0) \)

b) \(y = f(x) \) is not differentiable at \(x = -1 \), but \(y = (f(x))^2 \) is differentiable at \(x = -1 \).

\(y = f(x) \) is not continuous at \(x = 5 \), but it is differentiable at \(x = 5 \).

\(\lim_{x \to 0} f(x) = 2 \) and \(f(0.000000000000001) = -1. \)

e) \(f(2) = 3, f(4) = -1 \) and \(f(x) \neq 0 \) for all \(x \).
1) Sketch the graph of \(y = x^3 - 6x^2 + 5 \) by computing \(y' \) and \(y'' \), determining their signs, finding the local extreme points, the inflection points and the intercepts.

2a) Let \(x = \int_{1/2}^{y} \frac{dt}{\sqrt{t - t^3}} \). Find \(\frac{dy}{dx} \) at a point where \(\frac{d^2y}{dx^2} = 0 \).

2b) A ball of radius 5 cm is dropped directly under a light bulb which is 3 m above the floor. If at the moment the ball is 35 cm away from the bulb it is moving at a speed of 2 m/sec, how fast is the radius of the shadow of the ball on the floor changing?

3) Evaluate the following integrals:
 a) \(\int_{3}^{4} \sqrt{x^4 - 4x^3 + 4x^2 - 1} \, dx \)
 b) \(\int_{0}^{\pi} \sin^3 x \cos^2 x \, dx \)
 c) \(\int x(x + 1)^{1/3} \, dx \)
 d) \(\int \frac{\tan \theta}{\sqrt{\sec \theta}} \, d\theta \)

4) A cylinder is drawn inside a sphere of radius 1. Find the maximum possible area of the cylinder.

5a) Find \(f \) if \(f''(x) = 1 \) for all \(x \), \(f(0) = 1 \) and \(f(2) = 2 \).

5b) Show that if \(g''(x) \leq 0 \) for all \(x \), \(g(0) = 0 \) and \(g(2) = 0 \), then \(g(x) \geq 0 \) for all \(0 \leq x \leq 2 \).

5c) Show that if \(h''(x) \leq 1 \) for all \(x \), \(h(0) = 1 \) and \(h(2) = 2 \), then \(h(x) \geq 7/8 \) for all \(0 \leq x \leq 2 \).
b) \(\int_{\pi/2}^{\pi/2} \frac{dx}{\sin x - 2 \cos x + 3} \)

b) \(\int \sqrt{1 + e^x} \, dx \)

3a) Find the linearization of \(f(x) = \arcsin x = \sin^{-1} x \) centered at \(x = 1/2 \).

3b) Evaluate the limit \(\lim_{x \to 0} \left(\frac{(1 + x)^{1/x}}{e} \right)^{1/x} \).

4) A solid cylinder whose axis is the \(x \)-axis intersects another solid cylinder whose axis is the \(y \)-axis. Both cylinders have radius 2 units. Find the volume of the part of the intersection that lies in the first octant.

5) Suppose that the function \(f \) is continuous, increasing and \(f(x) \geq 0 \) on \([0, \infty)\).

a) Write down an integral expressing the volume \(V(a) \) of the solid generated by revolving the region between the graph \(y = f(x) \) and the \(x \)-axis for \(0 \leq x \leq a \) about the \(x \)-axis where \(a \) is a constant.

b) Write down an integral expressing the volume \(W(a) \) of the solid generated by revolving the region between the graph \(y = f(x) \) and the line \(y = f(a) \) for \(0 \leq x \leq a \) about the \(y \)-axis where \(a \) is a constant.

c) Find \(f'(3) \) if \(V(a) = W(a) \) for all \(a \geq 0 \) and \(f(3) = 2 \).

d) Find \(f(x) \) for all \(x \geq 0 \) if \(V(a) = W(a) \) for all \(a \geq 0 \) and \(f(3) = 2 \).

Fall 2003 Midterm I

1) For a real number \(t \), let \(L_t \) be the line passing through the point \((-1, 0)\) with slope \(t \), and let \(M_t \) be the line passing through the point \((1, 0)\) and perpendicular to \(L_t \).

a) Find the intersection point \(P_t \) of the lines \(L_t \) and \(M_t \).

b) Describe the curve traced by \(P_t \) for \(-\infty < t < \infty\) using Cartesian coordinates.

2) Determine all values of the constant \(a \) for which the function \(f(x) = e^x + ae^{-x} \) is one-to-one. For these values of \(a \), find \(f^{-1}(x) \) and the domain of \(f^{-1} \).

3) Find the following limits:

a) \(\lim_{h \to 0} \frac{1}{(x + h)^2} - \frac{1}{x^2} \)

b) \(\lim_{x \to 9} \frac{x^3 - 729}{x - \sqrt{x} - 6} \)
4a) Find the limit \(\lim_{x \to 0^+} \frac{1 - \sqrt{\cos x}}{(1 - \cos \sqrt{x}) \sin x} \)

4b) Prove that if \(|f(x)| < 7 \) for \(0 < |x - 2| < 1 \) and \(\lim_{x \to 2} g(x) = 0 \), then \(\lim_{x \to 2} (f(x)g(x)) = 0 \)

5) Show that \(\lim_{x \to 1} (x^2 + x) = 2 \) using the \(\varepsilon-\delta \) definition of the limit.

Fall 2003 Midterm II

1) Find the values of \(h, k \) and \(r > 0 \) that make the circle \((x - h)^2 + (y - k)^2 = r^2 \) tangent to the parabola \(y = x^2 + 1 \) at the point \((1, 2)\) and that also make the second derivatives \(\frac{d^2 y}{dx^2} \) have the same value on both curves there.

2) A particle moves along the curve \(2x^3 + 2y^3 = 9xy \). If the distance of the particle to the origin is increasing at a rate of 3 m/sec at the moment it passes through the point \((2, 1)\), how fast is its \(x \)-coordinate changing at this moment?

3a) Find \(y' \) if \(y = \tan^3(x^2 + \cos(5x)) \). (Do not simplify!)

3b) Assume that \(f \) is continuous on \([0, 2]\) and \(f(0) = f(2) = 0 \). Show that \(f(c + 1) = f(c) \) for some \(c \).

4) A cone is constructed from a disk of radius \(a \) by removing a sector \(AOC \) of arc length \(x \) and then connecting the edges \(OA \) and \(OC \). Find the maximum possible volume of the cone.

5) Graph \(y = \frac{x - 1}{\sqrt{2x^2 + 1}} \) by computing \(y' \) and \(y'' \) and determining their signs and the shape of the graph, finding the critical points, the inflection points and the intercepts, and finding the asymptotes.

Fall 2003 Final

1) Find the volume of the solid generated by revolving the region bounded by the curve \(y = \ln x \), the \(x \)-axis and the line \(x = e \) about
 a) the \(x \)-axis.
 b) the \(y \)-axis.

2) Evaluate the following integrals:

a) \(\int_0^1 \frac{dx}{(x^2 + 1)^2} \)
b) \[\int \frac{dx}{e^x - e^{-x}} \]

3) Evaluate the following limits:

a) \[\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) \]

b) \[\lim_{x \to \infty} \left(\frac{2}{\pi} \arctan 3x \right)^x \]

4) Find \(\frac{dy}{dx} \) at \((x, y) = (1, 2)\) if \(x^y + y^x = 3\).

5a) Show that \(|\arctan a - \arctan b| \leq |a - b|\) for all \(a, b\).

5b) Find \(f''(1) \) if \(f(x) = x \int_0^x \frac{t^2}{\sqrt{1 + t^4}} \, dt \).

Fall 2002 Midterm I

1) a) Find \(\lim_{x \to 0^+} \frac{\sqrt{\sin 2x} - \sqrt{\sin x}}{\sqrt{x}} \).

b) Use the \(\varepsilon-\delta \) definition of the limit to show that \(\lim_{x \to 0} (\sin(\sqrt{x}) \sin(1/x)) = 0 \).

2) Let \(f \) be a differentiable function such that \(xf(x) + f(x^2) = 2 \) for all \(x > 0 \).

a) Find \(f'(1) \).

b) Show that if \(f(x_0) = 0 \) for some \(x_0 > 1 \), then there is exists \(x_1 > x_0 \) such that \(f(x_1) = 0 \).

3) Find the derivatives of the following functions:

a) \(y = \tan^5(\pi x^3) \)

b) \(y = \sqrt[4]{\frac{x}{x^2 + 1}} \)

4) Find \(y'' \) at the point \((x, y) = (\pi/2, 0)\) if \(y \) is a differentiable function of \(x \) satisfying the equation \(y^2 = x \cos(x + y) \).

5) Points \(A \) and \(B \) move along the \(x\)- and \(y\)-axes, respectively, in such a way that the distance \(r \) (meters) along the perpendicular from the origin to the line \(AB \) remains constant. How fast is \(OA \) changing, and is it increasing, or decreasing, when \(OB = 2r \) and \(B \) is moving toward \(O \) at the rate of 0.3\(r \) m/sec?
Fall 2002 Midterm II

1) Graph \(y = \frac{x^2 - 4}{x + 1} \) by computing \(y' \) and \(y'' \) and determining their signs and the shape of the graph, finding the critical points, the inflection points and the intercepts, and finding the asymptotes.

2) Consider the area of the region between the parabola \(y = x^2 \) and the line \(y = c \) for \(0 \leq x \leq 1 \) as a function of \(c \). Find the absolute maximum and the absolute minimum values of this function on the interval \(0 \leq c \leq 1 \).

3a) Evaluate the limit \(\lim_{{n \to \infty}} \sum_{{k=1}}^{n} \frac{n}{(n+k)^2} \).

3b) Evaluate \(y' + y'' \) at \(x = \pi/4 \) if \(f \) is a differentiable function with \(f'(1/\sqrt{2}) = 4 \) and \(y = \int_0^{\sin x} f(t) \, dt \).

4) Evaluate the following integrals:
 a) \(\int \frac{x^3}{\sqrt{x^2 - 9}} \, dx \)
 b) \(\int_{\pi^2/36}^{\pi^2/4} \frac{\cos(\sqrt{\theta})}{\sqrt{\theta} \sin^2(\sqrt{\theta})} \, d\theta \)

5) Find the area of the region enclosed by the curves \(y^4 = 2y^3 + x \) and \((y-1)^2 = x + 1 \).

Fall 2002 Final

1) Let \(c \) be a positive constant. Find the point on the curve \(y = \sqrt{x} \) closest to the point \((c, 0) \).

2) Find the volume generated by revolving the region enclosed by the curves \(y = \frac{1}{\sqrt{3 + x^2}} \) and \(y = \frac{x^2}{2} \) about
 a) the \(x \)-axis
 b) the \(y \)-axis

3a) Find \(h''(1) \) if \(h(x) = (g(x^2))^3 \) and \(g^{(n)}(1) = n + 1 \) for \(n \geq 0 \).

3b) Find \(f'(1) \) if \(\int_{1}^{x} f(t) \, dt = x + \ln(f(x)) \) for all \(x \).

4) Evaluate the following limits:
a) \(\lim_{x \to \infty} \left(1 + \frac{2}{3x} \right)^x\)

b) \(\lim_{x \to 1} \frac{\int_1^x t^4 \, dt}{x^{x+1} - 1}\)

5) Evaluate the following integrals:

a) \(\int \frac{(1 + e^x)^2}{1 + e^{2x}} \, dx\)

b) \(\int_0^1 \sqrt{\frac{1 - x}{1 + x}} \, dx\)

Fall 2001 Midterm I

1) Find the following limits: \((Do\ not\ use\ L'Hôpital's\ Rule.)\)

a) \(\lim_{x \to -2} \frac{x^2 + 5x + 6}{x^2 + x - 2}\)

b) \(\lim_{x \to 0} \frac{\sqrt{2 - \cos x} - 1}{\sin^2 \pi x}\)

2) Find the derivatives of the following functions:

a) \(y = \left(\frac{\sin x}{1 + \cos x} \right)^2\)

b) \(y = \sqrt{x} \sin(\sqrt{x})\)

3) Find \(y''\) at the point \((1, 1)\) if \(y\) is a differentiable function of \(x\) satisfying the equation \(x^3 + y^3 = 6xy - 4\).

4) a) Let \(A\) and \(B\) the points of intersection of the tangent line to the curve \(y = 1/x\) at a point \(P(x_0, y_0)\) with the \(y\) - and \(x\)-axes, respectively. Find the length of the line segment \(AB\) as a function of \(x_0\).

b) Suppose that the point \(P\) is moving along the curve \(y = 1/x\). If at the moment \(P\) passes through the point \((2, 1/2)\), the length of the line segment \(AB\) is increasing at a rate of 4 mm/sec, how fast is \(x_0\) changing?

5) Graph \(y = 4x^3 - x^4\) by computing \(y'\) and \(y''\), finding the critical points and the inflection points, determining the signs of the derivatives, determining the shape of the graph and finding the intercepts.

Fall 2001 Midterm I
1) An 8 feet high wall is 27 feet away from a building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall.

2) Suppose that u is a continuous function and a is a real constant satisfying

$$\int_0^x u(t) e^{a(t^2-x^2)} \, dt = \sin x$$

for all x. Find a if $u'(\pi/2) = 5$.

3) Find the volumes of the solids generated by revolving each of the following regions about the x-axis.

 a) The region lying between $y = \cos x$ and $y = \sin x$ for $0 \leq x \leq \pi/3$.

 b) The region bounded on the left by $x = 3y^2 - 2$, on the right by $x = y^2$, and below by the x-axis.

4) Find the following integrals:

 a) $\int \frac{x}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^2}}} \, dx$

 b) $\int_0^{\ln 3} \frac{1}{e^x + 2} \, dx$

5) Let $g(x) = x^{-5}$. Find a function f such that $f(1) = 1$ and

$$\frac{d}{dx} (f(x)g(x)) = \frac{d}{dx} (f(x)) \cdot \frac{d}{dx} (g(x))$$

for all $x > 0$.

Fall 2001 Final

1) Find the following limits.

 a) $\lim_{x \to 0^+} (\sin(x^2))^{1/\ln x}$

 b) $\lim_{x \to 0} \left(\frac{1}{x^3} \int_0^x e^{t^4} - e^{-t^4} \, dt \right)$

2) Evaluate the following integrals.

 a) $\int x^2 (\ln x)^2 \, dx$

 b) $\int \frac{1}{(x^2 + 4x + 5)^2} \, dx$
3) Evaluate the improper integral \[\int_2^\infty \frac{x + 3}{(x - 1)(x^2 + 1)} \, dx. \]

4) Graph the function \(f(x) = xe^{-x} \) by finding the intervals on which it is increasing, decreasing, concave up, concave down; its critical points and inflections points, and its asymptotes.

5) Let \(f(x) = x^{1/x} \) for \(x > 0 \).
 a) Find the absolute maximum value of \(f(x) \).
 b) Show that \(\sqrt{2} \leq \int_2^3 f(x) \, dx \leq \sqrt{3} \).

Fall 2000 Midterm I

1) Evaluate the following limits. (Do not use L’Hôpital’s Rule.)
 a) \(\lim_{x \to 0} \frac{x}{\sqrt{1 + \tan 3x} - 1} \)
 b) \(\lim_{x \to 0} \frac{\sin 4x - 2 \sin 2x}{x^3} \)

2) Let
 \[f(x) = \begin{cases}
 1 + (x - 1) \sin \left(\frac{1}{x - 1}\right) & \text{if } x > 1, \\
 |x|/x & \text{if } 0 \neq |x| \leq 1 \\
 -1 + \sin \left(\frac{1}{x + 1}\right) & \text{if } x < -1.
 \end{cases} \]
 Determine if each of the following limits exists. Explain your reasoning in detail.
 a) \(\lim_{x \to 1} f(x) \)
 b) \(\lim_{x \to 0} f(x) \)
 c) \(\lim_{x \to -1} f(x) \)

3) Find the equation of the tangent line of the curve \(y = \sqrt{x} \) which is perpendicular to the line \(2x + 3y = 5 \).

4) A particle moves along the curve \(y = x^3 + 1 \) in such a way that its distance from the origin increases at a rate of 7 units per second. Find the rate of change of the \(x \)-coordinate of the particle when it passes through the point \((1, 2)\).
Assume that the function f satisfies the equation $f'(x) = f(x/2)$ for all x, and $f(0) = 1$.

a) Show that if $f(x_0) = 0$ for some $x_0 > 0$, then there is x_1 such that $0 < x_1 < x_0$ and $f(x_1) = 0$.

b) Find $f''(0)$.

6) Graph the function $y = x^{4/3} + 4x^{1/3}$ by computing y' and y'', determining their signs, and finding the extreme points, the inflection points and x-intercepts.

Fall 2000 Midterm II

1) A wire of length L is bent to form the shape \square where the sides of the square have length a and the radius of the semicircle is r, and then revolved about the line containing the fourth side of the square to sweep out the surface of a sphere and a cylinder. Find r and a which give the maximum surface area.

(1. This question requires no integration: you can use the surface area formulas for these geometric objects. 2. Note that the bottom and the top of the cylinder as well as its side are included in the surface area.)

2) a) Evaluate the limit $\lim_{x \to 0^+} \int_0^x \frac{1}{(x-t)^4 + x^4} \, dt$.

b) If $f(x) = \int_2^{\sqrt{x}} \sqrt{9 + t^4} \, dt$, find $f'(4)$.

3) Evaluate the following integrals:

a) $\int_0^{\pi/2} \frac{\sin 2x}{(a \sin^2 x + b \cos^2 x)^2} \, dx$ where $a, b > 0$.

b) $\int (1 + x^{-3/4})^{1/3} \, dx$.

4) a) If $y' = \frac{\sin^3(1/x) \cos(1/x)}{x^2}$ and $y(3/\pi) = 1$, find $y(4/\pi)$.

b) Evaluate the limit $\lim_{n \to \infty} \left(\frac{1}{2n+1} + \frac{1}{2n+3} + \cdots + \frac{1}{4n-3} + \frac{1}{4n-1} \right)$.

5) a) Find the volume of the solid obtained by revolving the region between the curve $y = x^2 - x^3$ and the x-axis about the y-axis.

b) Find the area of the smaller piece if a sphere with radius 3 is cut into two by a plane passing 2 units away from its center.
6) Show that \(\int_0^{\pi} \frac{t \sin^2 t}{1 + t^2} \, dt \leq \frac{\pi}{4} \).

Fall 2000 Final

1) Consider the rectangles bounded by the axes and the lines perpendicular to the axes through a point on the curve \(y = (\ln x)^4/x^3 \) for \(x \geq 1 \). Find the maximum value of the area of these rectangles if it exists.

2) Sketch the graph of the function \(y = (x^2 - 2x)e^x \) by computing \(y', y'' \), determining the shape of the graph, finding the critical points, the inflection points, and the \(x \)-intercepts, and the asymptotes.

3) a) Find the volume of the solid obtained by revolving the region between the graph of \(f(x) = \begin{cases} \tan x/x & \text{if } 0 < x \leq \pi/4 \\ 1 & \text{if } x = 0 \end{cases} \) and the \(x \)-axis about the \(y \)-axis.

 b) Evaluate the improper integral \(\int_0^\infty \frac{dx}{a + be^x} \).

4) Evaluate the integrals:

 a) \(\int_{-\pi/2}^{\pi/2} \frac{\cos x}{(9 + 2 \sin x)(5 + \sin x)} \, dx \)

 b) \(\int (\arcsin x)^2 \, dx \)

5) Evaluate the following limits:

 a) \(\lim_{x \to \infty} x \int_0^1 e^{-t^2/x^2} \ln \left(1 + \frac{t}{x}\right) \, dt \)

 b) \(\lim_{x \to 0} (\cos x)^{1/x^2} \)

6) Let \(f \) be a continuous function and define

 \[g(x) = \int_{-1}^1 f(t) |x - t| \, dt \]

for all \(x \). Express \(g''(x) \) in terms of \(f(x) \) for \(x \) in \((-1, 1)\).

Fall 1999 Midterm I

1) Evaluate the following limits: (You are not allowed to use the L'Hôpital’s Rule.)
a) \[\lim_{x \to 0} \frac{\tan x - \sin x}{x(\cos^3 2x - 1)} \]

b) \[\lim_{x \to 2} \frac{\sin(x - 2)}{\sqrt{x + 3} - \sqrt{2x + 1}} \]

2) Find \(f'(8) \) if the function \(f(x) \) satisfies the following properties:

- \(f(ab) = f(a) + f(b) \) for all \(a, b > 0 \).
- \(\lim_{x \to 1} \frac{f(x)}{x - 1} = 2 \).

3) Sketch the graph of \(y = x^{-1/3} - x^{-2/3} \) by computing \(y' \) and \(y'' \), determining their signs, finding the critical and the inflection points, indicating the intervals on which the function is increasing, decreasing, concave up, concave down, and finding the asymptotes.

4) Find \(y''' \) at \((x, y) = (1, 0)\) if \(\sin(xy) + x = 1 \).

5) a) The length of the hypotenuse of a right triangle is constant at 5 cm, and the length of one of its sides is increasing at a rate of 2 cm/sec. Find the rate of change of the area of the triangle, when this side is 4 cm long.

 b) Show that for any twice differentiable function \(f(x) \) on the entire real line such that \(f(0) = 0, f(1) = 1, f(2) = 4 \), there exists a point \(c \) in \((0, 2)\) such that \(f''(c) = 2 \).

Fall 1999 Midterm II

1) A 36\(\pi \) m\(^3\) container with cylindrical side and hemispherical ends is going to be constructed. The construction of the cylindrical side surface costs \(3 \times 10^9 \) TL/m\(^2\) and the construction of the hemispheres costs \(10 \times 10^9 \) TL/m\(^2\). Find the minimum cost of constructing this container.

2) Show that the function \(f(x) = \int_{e^{-x}}^{e^x} \frac{\sin t}{t} \, dt \) has a critical point at \(x = a \) where \(a \) is the positive real number satisfying \(e^a + e^{-a} = 2\pi \) and determine whether this is a local maximum or minimum.

3) a) Find the volume of the solid generated by revolving the region between the curve \(y = x^3 \) and the \(x\)-axis for \(0 \leq x \leq 1 \) about the \(y\)-axis.

 b) Find the area of the surface generated by revolving the curve \(y = x^3 \) for \(0 \leq x \leq 1 \) about the \(x\)-axis.

4) a) Evaluate the integral \(\int_1^8 \frac{1}{x + 5\sqrt{x}} \, dx \).
b) Show that \(\frac{5\pi}{24} \leq \int_{\pi/3}^{\pi/2} \sqrt{1 + \sin^4 x} \, dx \leq \frac{\pi}{3\sqrt{2}} \).

5) Evaluate the limit

\[
\lim_{x \to \infty} \left(1 + \ln\left(\cos\frac{a}{x}\right) \right)^{x^2}
\]

where \(a \) is a constant.

Fall 1999 Final

1) a) Let

\[
f(x) = \begin{cases}
\frac{1}{x^2} \int_0^{[x]} \sin t^2 \, dt & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

Does \(f'(0) \) exist? Explain.

b) Suppose \(g(x) \) and \(h(x) \) are differentiable functions on \([0, 1]\) and \(g(0) = 4, g(1) = 1, h(0) = 3, h(1) = 0 \). Show that there exists a point \(c \) in \((0, 1)\) such that \(g'(c) = h'(c) \).

2) a) Find constants \(a \) and \(b \) such that \(\lim_{x \to \infty} \left(xe^{1/x} - (ax + b) \right) = 0 \).

b) Sketch the graph of \(y = xe^{1/x} \).

3) Find \(\int_{\pi/2}^{3\pi/2} f(x) \, dx \) if \(f'(x) = \frac{\cos x}{x} \), \(f(\pi/2) = a \) and \(f(3\pi/2) = b \).

4) Evaluate the following integrals:
 a) \(\int \frac{1}{2x^2 + 5x + 2} \, dx \)
 b) \(\int x \tan^2 x \, dx \)

5) Evaluate the integral \(\int_{-\infty}^{\infty} \frac{1}{e^x + a e^{-x}} \, dx \) where \(a \) is a positive constant.

Fall 1997 Midterm I
1) Assume the functions f and g have the following properties: for every ε and x,

\[
\text{if } 0 < |x - 2| < \frac{3\varepsilon}{2} \text{ then } |f(x) - 3| < \varepsilon, \\
\text{and if } 0 < |x - 2| < \varepsilon + \sqrt{\varepsilon} \text{ then } |g(x) - 4| < \varepsilon.
\]

Find a number $\delta > 0$ such that for all x,

\[
\text{if } 0 < |x - 2| < \delta \text{ then } |f(x) + g(x) - 7| < \frac{1}{50}.
\]

2a) Evaluate the limit \(\lim_{x \to 0} \frac{\cos^3 3x - \cos^3 2x}{x^2} \).

2b) Find \(\frac{d^2 y}{dx^2} \) by implicit differentiation at the point \((1, -1)\): \(x \cos^2(\pi y) + y^3 = 0\).

3) Graph the function \(f(x) = x^3 - x^2 + 3\) by computing \(f'\) and \(f''\), determining their signs, finding the critical points and inflection points, indicating the intervals on which the function is increasing, decreasing, concave up, down, and finding the asymptotes.

4) A sphere of radius r is inscribed into a cone. Find the radius and the height of the cone (in terms of r) if its volume is to be minimum.

5) A point A is moving in the counterclockwise direction along the ellipse \(\frac{x^2}{9} + \frac{y^2}{16} = 1 \) so that the ray OA has constant angular speed of 6 radians per second (where O is the origin). Find the rate of change of the area of the triangle formed by OA, the x-axis and the perpendicular from A to the x-axis at a moment when A is \((-12/5, 12/5)\).

Fall 1997 Midterm II

1) Let the function f be defined as follows:

\[f(x) = \begin{cases}
 f_0^x t \sin(1/t) \, dt & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases} \]

Find $f'(0)$.

2a) Evaluate the limit \(\lim_{x \to 0} \frac{\ln(1 + x) - x + x^2/2}{x^3} \).

2b) Find \(\frac{dy}{dx} \) where $y = (\ln x)^{\ln x}$.

3) Let C_1 be the graph of $y = x^m$, C be the graph of $y = kx^m$, and C_2 be the graph of $y = f(x)$ where $m > 0$ and $k > 1$ are constants, and f is an increasing continuous function with $f(0) = 0$. Find f if C bisects C_1 and C_2 in the following sense: for every
(a, b) on C, the area of the region between C and C₁ for 0 ≤ x ≤ a is equal to the
area of the region between C and C₂ for 0 ≤ y ≤ b.

4) The top and the bottom of a truncated rectangular pyramid of height h have sides
of length a and b, and A and B, respectively. Find the volume.

5) The plane region between the parabolas \(y = 4 - x^2 \) and \(y = 8 - 2x^2 \) has density
\(\delta(x, y) = 3y \). Find the coordinates of the center of mass.

Fall 1997 Final

1) Evaluate the following limits:
 a) \(\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2} \).
 b) \(\lim_{n \to \infty} \int_0^n \left(1 + \frac{\pi}{x} \right)^x \frac{dx}{n} \).

2) Evaluate the following integrals. You may not use any reduction formulas or
formulas from the integration tables.
 a) \(\int \frac{x \, dx}{\sqrt{x^2 + 2x}} \).
 b) \(\int_0^\infty \frac{x^2 + x}{(x^2 + 1)^2} \, dx \).

3) Let \(R \) be the region in the \(xy \)-plane bounded by the curve \(y = 1/x^{3/2} \), the \(x \)-axis,
the lines \(x = u \) and \(x = u^2 \) for \(u \geq 1 \). Assume that \(R \) is revolved about the \(x \)-axis and
a solid is generated. Let \(V(u) \) denote the volume of this solid. Find the maximum
value of \(V(u) \) for \(u \geq 1 \).

4) An irregularly shaped water container is 5 units deep. It has a flat bottom and
cross-sectional areas \(A(z) = (z^3 + 2z + 15)^{1/3} \) units³ where \(z \) is the depth measured
from the bottom and the cross-sections are taken by planes parallel to the bottom.
Initially the container is full of water. Then the water is pumped out of the container
at the constant rate of 0.3 units³/sec. How fast is the depth of the water decreasing
when water is 2 units deep?

5) a) Determine whether the following improper integral converges or diverges:

\[
\int_0^\infty \frac{dx}{\sqrt{x^2 + 1} e^{-x}}
\]
b) Let \(p > q > 0 \) be constants. Find all possible values of \(p \) and \(q \) for which the following improper integral is convergent:

\[
\int_0^\infty \frac{dx}{x^p + x^q}
\]

Fall 1996 Midterm I

1) Show that \((1 + x)^a < 1 + ax\) for all \(x > 0 \) and \(0 < a < 1 \).

2) Find \((f \circ g \circ h)'(0)\) if \(f(x) = \cos x \), \(g(y) = \frac{\pi}{6} y^2 + y - 1 \) and \(h(z) = \frac{1}{\sqrt{1 + z + z^2}} \).

3) Consider the curve \(y = \frac{3x^2 + 1}{2x^2 + 5} \). Find the points where the slope of this curve assumes its absolute maximum and absolute minimum.

4) A silo (base not included) is to be constructed in the form of a cylinder surmounted by a hemisphere. The cost of construction per square unit surface area is twice as great for the hemisphere as it is for the cylindrical sidewall. Determine the dimensions to be used if the volume is fixed and the cost of construction is to be kept to a minimum.

5) Let

\[
f(x) = \begin{cases}
2x + x^2 \sin(1/x) & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

Find \(f'(x) \) for all \(x \). Is \(f' \) continuous at \(x = 0 \)? Explain.

Fall 1996 Midterm II

1) Find \(y'(1) \) if \(x^y + y^x = 3 \).

2) Find the area of the surface of revolution obtained by rotating the curve \(y = \frac{1}{2} \left(\frac{1}{1 - \alpha} x^{1-\alpha} - \frac{1}{1 + \alpha} x^{1+\alpha} \right) \), \(0 \leq x \leq 1 \), about the \(x \)-axis where \(0 < \alpha < 1 \).

3) Evaluate the integral \(\int_0^1 \frac{x^2 + 1}{x^2 - x - 6} \, dx \).

4) Evaluate the limit \(\lim_{n \to \infty} \left(\ln n - \frac{1}{n} \sum_{k=n+1}^{2n} \ln k \right) \).
5) Evaluate the limit \(\lim_{x \to \infty} \left(x \int_0^1 \frac{e^{-xt}}{1+t^2} \, dt \right) \).

Fall 1996 Final

1) If \(f(x) = x \int_e^x \frac{dt}{\ln t} \) for \(x > 1 \), find \(f''(e) \).

2) For \(0 \leq t \leq 1 \), let \(A(t) \) denote the area of the triangle bounded by the \(x \)-axis, the \(y \)-axis and the tangent line to the curve \(y = \ln x \) at \((t, \ln t) \). Find the maximum value of \(A(t) \).

3) Sketch the graph of \(y = x(\ln x)^2 \).

4) [missing]

5) Evaluate the improper integral \(\int_1^\infty \left(\frac{1}{x} + \tan^{-1} x - \frac{\pi}{2} \right) \, dx \).

Fall 1995 Midterm I

1) Let \(A(0, t^2/\sqrt{3}) \) and \(B(4, 0) \) where the time \(0 \leq t < \infty \) is measured in seconds. Let \(\theta \) be the measure of the angle \(OBA \). At what times is \(\theta \) changing the fastest and the slowest?

2) Find \(y'' \) at \(x = 0 \) if \(\sin xy + x^2 + y = \pi \).

3) Find the constant \(k \) for which the limit
\[\lim_{x \to 0} \frac{\sin(x + kx^3) - x}{x^5} \]
exists, and find the value of the limit then for this \(k \).

4) You are drawing up plans for the piping that will connect a drilling rig 30 kilometers offshore to a refinery on shore 35 kilometers down the cost. How far away from the refinery should the pipeline reach the coast to give the least expensive connection if underwater pipe costs 5 BTL per kilometer and land based pipe costs 4 BTL per kilometer. (1 BTL=1 billion Turkish Liras.)

5) Graph the function \(y = \frac{3x^3 - 2x}{x^2 - 1} \) by finding its asymptotes, local minimums and maximums, inflection points and intercepts.
Fall 1995 Midterm II

1) Let D_n denote the region that is under the curve $y = \frac{1}{x^2 \sqrt{x^2 - 1}}$, above the x-axis and between the lines $x = 1 + \frac{1}{n}$ and $x = n$, where n is a positive integer. Revolve the region D_n around the y-axis and denote the volume of the resulting solid by V_n. Find $\lim_{n \to \infty} V_n$.

2) For which value of α, $\int_{\pi/3}^{\pi/6} (\log_2 2)(\log_2 \sin x)' \tan x \, dx = \frac{\pi}{6}$?

3) Evaluate the limit $\lim_{x \to \infty} x \int_0^x e^{t^2 - x^2} \, dt$.

4) Consider the region inside the circle $x^2 + (y - 2)^2 = 1$ and between the lines $x = -1/2$ and $x = 1/2$. Find the surface area of the solid obtained by revolving this region around the x-axis.

5) Graph the function $y = e^{1/x}$ by finding its
 a) asymptotes and $\lim_{x \to 0^{-}} y'$,
 b) local minimums and maximums,
 c) inflection points,
 d) making a table of the relevant values.

Fall 1995 Final

1a) Explain whether $\int_{-\infty}^{\infty} \frac{x^2}{e^x + e^{-x}} \, dx$ converges or diverges.

1b) Evaluate $\int_{10}^{\infty} \frac{dx}{x(\ln x)(\ln \ln x)}$.

2a) Find $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2}$.

2b) Given that $t \to \infty$, simplify $(t - t^{1/2} + O(1)) \cdot (t^{1/2} + 1 + O(t^{-1/2}))$.

2c) Explain briefly whether true or false: As $n \to \infty$,

$$\frac{1}{n + 1} - \frac{1}{n + 2} = o(n^{-3/2}).$$
3) According to Newton’s law of cooling, the rate at which the temperature of an object is changing at any given time is proportional to the difference between its temperature and the temperature of its environment (which is assumed to be constant). A pan of water at 25°C was put in a refrigerator. Ten minutes later, the temperature of the water was 13°C; 20 minutes after that, it was 4°C. Use Newton’s law of cooling to calculate how cold the refrigerator was.

4) Evaluate \(\int_{\frac{1}{2}}^{2} \frac{dx}{x^3 + 6x + 7} \).

5) The region bounded by the curve \(y = (\arctan x)^2 \), the \(x \)-axis and the line \(x = 1 \) is revolved about the \(y \)-axis to generate a solid. Find the volume of this solid.

Fall 1994 Midterm I

1) The graph of \(f \) is as shown. Draw the graph of the function \(g(x) = \frac{f(x)}{1 + f(x)} \). Indicate the asymptotes, extrema and the inflection points.

[The picture shows a graph \(y = f(x) \) such that \(f(-4) = 0, f(-3) = -1, f(-2) = -2, f(-1) = -1, f(0) = 0, f(2) = 2, f(3) = 0, f(7/2) = -1 \); \(f \) is increasing on \([-2, 2]\) and decreasing on \((-\infty, -2]\) and \([2, \infty)\). It is not clear from the picture if \(f \) is piecewise-linear.]

2) Find all positive integer values of \(n \) for which \(\cos(\frac{x^2}{n}) \) is differentiable at \(x = 0 \).

3) Estimate \(\sin 29^\circ \) by using the quadratic approximation. Give an upper bound for the error.

4) How many real solutions to \(x^3 + 3x - 5 = 0 \) are there? Apply Newton’s Method two steps to locate any root.

5) A straight line passing through the point \((1/2, 1) \) divides the rectangular region with corners at \((0, 0), (2, 0), (2, 4), (0, 4) \) into two subregions. Among all triangular subregions with the origin as one vertex that are formed by such a division, find the ones which have maximum and minimum areas.

Fall 1994 Midterm II

1a) Given that \(g(x) = \int_{1}^{f^{-1}(x)} \sqrt{1 + t^2} \, dt \) and \(f(3) = 2, f'(3) = 5 \), find \(g'(2) \).

1b) Find the volume of the solid described as follows: The base of the solid is the region between the curve \(y = 3\sqrt{\sin x} \) and the interval \([0, \pi]\) on the \(x \)-axis. The cross-sections perpendicular to the \(x \)-axis are squares.
2a) Find \(\lim_{n \to \infty} \left(\frac{1}{5n^2 + 1} + \frac{1}{5n^2 + 2} + \cdots + \frac{1}{6n^2} \right) \).

2b) Find \(\lim_{x \to \infty} \frac{\sqrt{\ln x}}{x} \int_2^x \frac{dy}{\sqrt{\ln y^2}} \).

3) Find the centroid of the quarter ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), \(x, y \geq 0 \).

4) Solve the initial value problem:
 \[\frac{1}{y + 2} \frac{dy}{dx} = x \cos^2 x^2, \quad y = e^2 - 2 \text{ when } x = 0. \]

5a) Estimate \(\ln 0.6 \) by quadratic approximation.

5b) Estimate \(\ln 0.6 \) by using Simpson’s rule with \(n = 4 \).

Fall 1994 Final

1a) Evaluate \(\int_{e^{-x}}^{e} e^{-x} \arctan(e^x) \, dx \).

1b) Evaluate \(\int \frac{dx}{(x^2 + 2x + 2)^{3/2}} \).

2) Evaluate \(\int x^5 e^{x^2} \, dx \).

3a) Determine whether \(\int_0^\infty \frac{dx}{\sqrt{x^3 + 1}} \) converges or diverges. Give reasons.

3b) For a certain number \(A \) the integral \(\int_2^\infty \left(\frac{Ax}{x^2 + 1} - \frac{1}{2x + 1} \right) \, dx \) converges. Find that value of \(A \) and the integral.

4) A boat is going in a straight line at 80 m/min when the engine of the boat is shut off. The boat is subject to a deceleration (i.e. negative acceleration) proportional to its speed. One minute later the speed of the boat is reduced to 40 m/min. How far has the boat drifted in that one minute?

5) Consider \(y = \text{sech} \, x \).

 a) Plot the graph of the function by considering the asymptotes and the signs of \(y' \) and \(y'' \).

 b) Find the quadratic approximation of \(y = \text{sech} \, x \) about \(x = 0 \).
c) Find the volume of the solid obtained by revolving the region between \(y = \sech x \) and the \(x \)-axis about the \(x \)-axis.

Fall 1993 Midterm I

1a) Let \(f(x) = x + \frac{\sin x}{2x - \frac{12}{x - 1}} \).

i) Find all the points at which \(f \) is discontinuous.

ii) Find all discontinuities at which \(f \) has a continuous extension.

1b) Let \(f \) be a continuous function and assume that for each \(0 \leq x \leq 1 \) we have \(0 \leq f(x) \leq 1 \). Show that the equation \(f(x) = x \) has a solution in the interval \([0, 1]\).

2a) Let \(y = t + \sin^2 u^2 \) where at \(t = 0 \), \(u = \sqrt{\frac{\pi}{3}} \) and \(\frac{du}{dt} = 1 \). Find \(y \) and \(\frac{dy}{dt} \) at \(t = 0 \).

2b) Consider the equation \(\cot \pi x = x \).

i) Show that this equation has exactly one solution \(r_k \) in \(I_k = (k, k + 1) \) for every \(k \in \mathbb{Z} \).

ii) Apply Newton’s method once to estimate \(r_k \).

3a) Let \(f(x) = \sqrt{x} \).

i) Find the quadratic approximation of \(f(x) \) for \(x \approx 1 \).

ii) Determine the accuracy of this approximation when \(\frac{3}{4} \leq x \leq \frac{5}{4} \).

3b) Show that the equation \(x^8 + x - 1 = 0 \) has exactly two real roots.

4a) Evaluate \(\lim_{x \to \infty} \left(\sqrt{3x^2 + 2x - 1} - \sqrt{3x^2 - x + 5} \right) \).

4b) Let \(f(x) = x^{-3} \sin 3x + Ax^{-2} + B \) where \(A \) and \(B \) are constants. Determine the values of \(A \) and \(B \) for which \(\lim_{x \to 0} f(x) = 2 \).

5) Graph the function \(f(x) = \frac{x^2}{4 + x|x|} \) by computing \(f' \) and \(f'' \); determining their signs; finding the critical points and the inflection points; indicating the intervals on which the graph is rising, falling, concave up, down; and finding the asymptotes.

6) If the sum of the volumes of a cube and a sphere is held constant, what ratio of an edge of the cube to the radius of the sphere will make the sum of the surface areas

a) as small as possible?
b) as large as possible?

Fall 1993 Midterm II

1a) Find \(\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n} \right) \).

1b) Given that \(f(1) = 3, f(2) = 5, f(4) = 7 \) and \(f(14) = 23 \), evaluate \(\int_1^2 (x^2 + 1)f'(x^3 + 3x) \, dx \).

2a) Find \(\lim_{y \to 0} \frac{1}{y} \int_0^y (\cos 2t)^{1/2} \, dt \).

2b) If \(x^2 y'' = 1 \) for all \(x > 0 \) and \(y' = -1, y = 1 \) when \(x = 1 \), find \(y \) for all \(x > 0 \).

3a) Estimate \(\ln(1 + 2x) \) about \(x = 0 \) by using the quadratic approximation and calculate \(\ln(1.4) \) approximately.

3b) Estimate \(\ln(1.4) \) using Simpson’s method by choosing 4 subintervals.

4a) The curve \(x = y^{1/2} - y^{3/2}/3 \) where \(0 \leq y \leq 1 \) is rotated about the y-axis. Find the area of the surface of revolution.

4b) Find the \(x \)-coordinate of the centroid of the curve in part (a).

5a) Find the area of the region bounded by the curves \(y = \tan x, y = 0, y = 1 \) and \(x = \pi/2 \).

5b) Find the volume of the solid generated by revolution of the region in part (a) about the \(x \)-axis.

6a) Plot the graph of the function \(y = x^2e^x \).

6b) Find \(\int \frac{dx}{1 + 2e^{-3x}} \).

Fall 1993 Final

1a) Draw the graph of \(y = \text{sech} \, x \) by computing \(y', y'' \), and finding the critical points, the inflection points, and the asymptotes.

b) Find the area between the curves \(y = \text{sech} \, x \) and \(y = \frac{3}{4} \cosh x \).

2) Find the volume generated by revolving the region bounded by \(y^2 = x^5 - x^8 \) about the \(y \)-axis.
3) a) Find the quadratic approximation of the function
\[f(x) = x^x - \frac{1}{2-x} \]
around \(x = 1 \).

b) Estimate the value of \(x^x \) for \(x = 10/11 \).

4) Let
\[f(x) = \int_1^x t^x (\ln t)^2 \, dt \]
a) Compute \(f(x) \).

b) Prove that \(f \) is continuous at \(x = -1 \).

5) Evaluate
\[\int_0^\infty \frac{x \, dx}{(x + 1)(x^2 + 2)} \]

6) a) Find \(y \) as a function of \(x \) if
\[x \frac{dy}{dx} = \tan y \]
and \(y = \frac{\pi}{6} \) when \(x = \frac{1}{2} \).

b) Prove that
\[\int_0^x \left(\int_0^u f(t) \, dt \right) \, du = \int_0^x f(u)(x - u) \, du \]

Fall 1992 Midterm I

1) Let
\[f(x) = g(x + g(x))g(x) \]
where \(g \) is such that \(g(0) = 2, g(1) = 1, g(2) = -5, \)
g'(0) = -3, g'(1) = 7, g'(2) = 4. Find \(f'(0) \).

2) Find the normal to the curve \(y = 4x^2 + \sin(\pi \tan(x^2)) \) at the point where \(x = \frac{\sqrt{\pi}}{2} \).

3a) Consider
\[f(x) = \sqrt{x^2 + x} - \sqrt{x^2 - x} \]
i) Find the domain of the function \(f \).

ii) Evaluate \(\lim_{x \to -\infty} f(x) \).

3b) Evaluate \(\lim_{x \to 0} \frac{\sin \alpha x - \tan \alpha x}{x^3} \) where \(\alpha \) is a constant.

4) a) Find the values of \(\alpha, \beta, \gamma \) for which the function
\[f(x) = \begin{cases}
2 & \text{if } x = 0, \\
-x^2 + 4x + \alpha & \text{if } 0 < x < 1, \\
\beta x + \gamma & \text{if } 1 \leq x \leq 3.
\end{cases} \]
is differentiable on \([0,3]\).

b) Find the local maxima and minima of \(f \) for these values of \(\alpha, \beta, \gamma \).
5) A 3 m long wire is used for making a circle and an equilateral triangle. How should the wire be distributed between the two shapes to maximize the sum of the enclosed areas?

6) Graph the function \(f(x) = \frac{x}{x^3 + 1} \) by computing \(f' \) and \(f'' \); determining their signs; finding the critical points and the inflection points; indicating the intervals on which the graph is rising, falling, concave up, down; and finding the asymptotes.

Fall 1992 Midterm II

1) a) Find the quadratic approximation at \(x = 0 \) of

\[
 f(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt .
\]

b) Find the error in this approximation for \(|x| \leq 1 \).

2) a) A solid is generated by revolving the region bounded by the graph of \(y = f(x) \), the \(x \)-axis, the lines \(x = 1 \) and \(x = a \) about the \(x \)-axis. Its volume, for all \(a \geq 1 \), is \(a^2 - a \). Find \(f(x) \).

b) A surface is generated by revolving the curve \(y = \frac{\sqrt{x}}{3}(3-x) \), \(0 \leq x \leq 3 \), about the \(x \)-axis. Find its area.

3) a) Using the Mean Value Theorem for Definite Integrals, find upper and lower bounds for the value of

\[
 \int_0^1 \frac{dx}{x^3 + 1} .
\]

b) Obtain better bounds by considering

\[
 \int_0^1 \frac{dx}{x^3 + 1} = \int_0^{1/2} \frac{dx}{x^3 + 1} + \int_{1/2}^1 \frac{dx}{x^3 + 1}
\]

and using the same theorem for the integrals on the right.

4) Evaluate:

a) \(\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2} \)

b) \(\lim_{x \to 0} \frac{x}{5^x - 3^x} \)

5) Evaluate:

a) \(\int_0^{\pi/2} \frac{\sin x \, dx}{3 + \cos^2 x} \)
b) \[\int_{e}^{\infty} \frac{dx}{x \ln x} \]

6) a) Show that the difference of the functions \(f(x) = \sin^{-1} \left(\frac{x^2 - 1}{x^2 + 1} \right) \) and \(g(x) = 2 \tan^{-1} x \) is a constant for \(x \geq 0 \).

 b) Find this constant.

Fall 1992 Final

1) Let \(f \) and \(g \) be continuous on \([a, b]\) and that \(f(a) \leq g(a) \) and \(f(b) \geq g(b) \). Show that there exists a point \(c \) in \([a, b]\) such that \(f(c) = g(c) \).

2) a) Given that \[\int_{0}^{x} (f(x) + f''(x)) \sin x \, dx = A \quad \text{and} \quad f(\pi) = B, \]
find \(f(0) \) in terms of \(A \) and \(B \).

 b) Let \[f(x) = \int_{0}^{x} \frac{dt}{\sqrt{1 + t^3}} \quad \text{for} \quad x \geq 0, \]
and let \(g = f^{-1} \). Show that \(g'' \) is proportional to \(g^2 \).

3) a) Show that \[\Gamma(x) = \int_{0}^{\infty} e^{-xt} t^{x-1} \, dt \]
converges for all \(x > 0 \).

 b) Show that \(\Gamma(x + 1) = x\Gamma(x) \) for \(x > 0 \).

4) a) Given \[f(x) = \begin{cases}
 \frac{g(x)}{x} & \text{for} \quad x \neq 0, \\
 0 & \text{for} \quad x = 0,
\end{cases} \]
and \(g(0) = 0, \; g'(0) = 0, \; g''(0) = 17 \), find \(f'(0) \).

 b) Evaluate the limit \(\lim_{x \to 0^+} x \arcsin x \).

5) Evaluate the integral \(\int \ln(\sqrt{x} + \sqrt{1 + x}) \, dx \).

6) A garden is to be designed in the shape of a circular sector with radius \(R \) and the central angle \(\theta \). The garden is to have fixed area \(A \). For what values of \(R \) and \(\theta \) will the length of the fencing around the perimeter be minimized?
Fall 1991 Midterm I

1) Use the ε-δ definition to show that $\lim_{x \to 2} (x^2 + 1) = 5$.

2) Let

$$f(x) = \begin{cases} g(x) \cos(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

where g is a differentiable function with $g(0) = g'(0) = 0$. Show that f is differentiable at $x = 0$ and $f''(0) = 0$.

3) Find the local minimum, local maximum and the inflection points of the function

$$f(x) = \begin{cases} x^2 & \text{if } x \leq 1, \\ (2 - x)^3 & \text{if } x > 1. \end{cases}$$

4) Sketch the graph of $y = \frac{2 + x - x^2}{(x - 1)^2}$.

5) Let $y = \sin x + \cos x$ and

$$z = \sin \left(\frac{y^3}{\sin (\frac{y^3}{\sin y})} \right).$$

Find the derivative of z with respect to x at the point $\frac{\pi}{4}$.

6) An isosceles triangle is inscribed into a circle of radius r. If the top angle of the triangle is required to lie between 0 and $\frac{\pi}{2}$, find the largest and the smallest values possible of the perimeter of the triangle.

Fall 1991 Midterm II

1) Evaluate the following limits:

a) $\lim_{x \to 0} \int_0^x \frac{\sin t^3}{\sin x^4} dt$

b) $\lim_{x \to 0} (e^x + x)^{1/x}$

2) Evaluate the following integrals:

a) $\int \frac{x^{49}}{1 + x^{100}} dx$
b) \(\lim_{x \to 0} \frac{dx}{\sqrt{e^{2x} - 1}} \)

3) Let \(0 < a < b \). Show that
\[
\frac{b - a}{1 + b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b - a}{1 + a^2}.
\]

4) Find the area of the surface generated by revolving the curve \(x = t^2, \ y = t^3/3 - t, \ -\sqrt{3} \leq t \leq \sqrt{3} \), about the \(y \)-axis.

5) The region between the graphs of \(y = x^2 \) and \(y = \frac{1}{2} - x^2 \) is revolved about the \(y \)-axis to form a lens. Compute the volume of the lens.

6) A point \(P(t) \) is moving along the \(x \)-axis in the positive direction at a speed of 5 cm/sec, and is at the origin at time \(t = 0 \). Find the rate of change, at time \(t = 0 \), of the area under the curve \(y = (\tanh^2 x + \cos^3 x)^4 \) and above the interval \([P(t), 100]\).

Fall 1991 Final

1) Discuss the continuity of the following functions in their domain of definition:

a) \(f(x) = \begin{cases} 1 & \text{if } x \neq 0, \\ \frac{1}{1 + e^{1/x}} & \text{if } x = 0. \end{cases} \)

b) \(f(x) = \begin{cases} x - |x| & \text{if } x < 0, \\ 2 & \text{if } x = 0. \end{cases} \)

3) Evaluate
\[
\lim_{n \to \infty} \left(\ln \sqrt{1 + \frac{1}{n}} + \ln \sqrt{1 + \frac{2}{n}} + \cdots + \ln \sqrt{1 + \frac{n}{n}} \right)
\]

by relating it to a definite integral.

4) Evaluate:

a) \(\int x^3 e^{x^2} \, dx \)

b) \(\int \frac{\sqrt{x}}{\sqrt{1 - x^2}} \, dx \)

5) Evaluate \(\int \frac{x}{\sqrt{x^2 + 2x + 5}} \, dx \).
6) Evaluate \(\int \frac{x \, dx}{(x + 1)^2(x^2 + 1)} \).

7) Find the volume of the solid generated by revolving the region \(R \) bounded by \(y = x^3 - 8x \) and \(y = -x^2 + 4x \) for \(0 \leq x \leq 3 \) about the line \(x = -1 \).

8) The continuously differentiable curve \(y = f(x) \) passes through the point \((0, 0)\), and for every \(x > 0 \) the length of the curve from \((0, 0)\) to \((x, f(x))\) is \(e^x + f(x) \). Find \(f(x) \).

9) a) Evaluate \(\lim_{x \to \infty} \left(1 - \frac{1}{x} + \frac{1}{x \sqrt{x}} \right)^2 \).

b) Differentiate \(\log_x(x^2 + 5) \) with respect to \(x \).

Fall 1990 Midterm I

1) Discuss the existence of the limit \(\lim_{x \to a} [\sin x + \cos x] \) where for any real number \(a \), \([a] \) denotes the greatest integer in \(a \).

2) A function \(f \) satisfies the following condition at a point \(x = x_0 \): There are numbers \(M > 0, \beta > 0 \) and \(\alpha \) such that

\[
0 < |x - x_0| < \beta \implies |f(x) - f(x_0)| < M|x - x_0|^\alpha .
\]

Then show that

a) if \(\alpha > 0 \), then \(f \) is continuous at \(x = x_0 \).

b) if \(\alpha > 1 \), then \(f \) is differentiable at \(x = x_0 \).

3) Find the equation of the line through the point \((3, 0)\) that is normal to the parabola \(y = x^2 \).

4) Let \(f(x) = \sqrt{x} \). Find a formula for the \(n \)th derivative \(f^{(n)} \) and prove your formula using induction.

5) Let \(g(x) = 1 + \sqrt{x} \) and \((f \circ g)(x) = 3 + 2\sqrt{x} + x \). Find \(f'(2) \) by

a) by first solving for \(f \) and then differentiating,

b) by the chain rule.

6) Consider the equation \(2 \sin x = x \).

a) Show that the equation above has a solution \(c \in \left(\frac{\pi}{2}, \frac{2\pi}{3} \right) \).
b) Can we find this solution by using Picard’s method? If your answer is YES, find an interval I such that every $x_0 \in I$ is a valid initial value for Picard’s method.

Fall 1990 Midterm II

1) A rectangle of fixed perimeter P is rotated about one of its sides to generate a cylinder. Of all such possible rectangles, find the dimensions of the one which generates the cylinder of greatest volume.

2) For $a > 1$ show that $\frac{a - 1}{a} \leq \ln a \leq a - 1$.

3) Evaluate:

 a) $\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$

 b) $\lim_{x \to 0^+} \frac{\ln(\tan 2x)}{\ln(\tan 3x)}$

4) Find the volume of the solid generated by revolving the region bounded by the graphs of $y = 4 - x^2$ and $y = 0$ about the line $x = 3$.

5) Show that the length of the sine curve $y = \sin x$ for $0 \leq x \leq \pi$ is equal to half of the circumference of the ellipse $2x^2 + y^2 = 2$.

6) Evaluate:

 a) $\int e^{(x + e^x)} \, dx$

 b) $\int_0^4 \frac{2x}{\sqrt{x(4 + \sqrt{x})}} \, dx$

Fall 1990 Final

1) When y is given by the following relation find y'' in terms of x and y. Simplify your answer.

 $\ln(x - y) = x + y$

2) Calculate the following limit: $\lim_{x \to 0} \left(\frac{3}{x^4} + \frac{1}{x^2} - \frac{3\tan x}{x^3} \right)$.

3) Find the following antiderivative: $\int \sqrt{4 + 3x} \, dx$.
4) Find the following antiderivative: \(\int \ln(x + \sqrt{1 + x^2}) \, dx \).

5) Find the area of the surface obtained by revolving \(y = \sin x \) around the \(x \)-axis for \(0 \leq x \leq \pi \).

6) A rectangle with sides of length \(a \) and \(b \) is inscribed in an isosceles triangle in such a way that one of the sides with length \(b \) is contained in the base of the triangle. Find the minimum possible area of triangle.

7) A point \(P \) at the origin of the \(xy \)-plane is attached by a string of length \(a \) to a mass \(M \) located at the point \((a, 0)\). The point \(P \) then moves up the \(y \)-axis, dragging the mass \(M \) by the string. As it moves, the mass traces a differentiable curve \(y = f(x) \). Find the equation of the curve \(y = f(x) \).

8) At points of the curve \(y = 2\sqrt{x} \), lines of length \(h = y \) are drawn perpendicular to the coordinate plane. Find the area of the surface formed by these lines from \((0, 0)\) to \((3, 2\sqrt{3})\).

Fall 1989 Midterm

1) Let \(f(x) \) be a differentiable function on \((0, \infty)\) and assume that \(\lim_{x \to 0} \frac{f(x)}{Ax^4 + Bx^3} = C \), where \(A, B, C \) are constants and \(A \neq 0 \).
 a) Find \(\lim_{x \to 0} \frac{f(x)}{x^2} \).
 b) Let
 \[
 H(x) = \begin{cases}
 f(x) & \text{if } x > 0, \\
 0 & \text{if } x = 0, \\
 -f(-x) & \text{if } x < 0.
 \end{cases}
 \]
 Show that \(H'(0) \) exists, and find its value.

2) Let \(f_1(x), f_2(x) \) and \(f_3(x) \) be differentiable functions on \(\mathbb{R} \) such that \(f_i(m) = 4 - i + m \) and \(f'_i(m) = i + m \) where \(i = 1, 2, 3 \) and \(m \) is an integer. Let \(F(x) = (f_1 \circ f_2 \circ f_3)(x) \). Find \(F'(1) \).
 Remark: The data above is enough to solve this problem. However if you want to know if such functions do exist, here are three functions satisfying these conditions: \(f_i(x) = 4 - i + x + \frac{i - 1}{2\pi} \sin 2\pi x + \frac{1}{4\pi} \sin 2\pi x^2, i = 1, 2, 3 \). Note that you should solve the problem without using this example.

3) Sketch the graph of \(y = \frac{x^3 - x^2 + 4}{x - 1} \).
4) Let $P(x)$ be a polynomial of degree n, and assume that $P(x) \geq 0$ for all $x \in \mathbb{R}$. Show that for all $x \in \mathbb{R}$,

$$P(x) + P'(x) + P''(x) + \cdots + P^{(n)}(x) \geq 0.$$

5) Assume that in an analogue clock the minute arm is twice as long as the hour arm. Find the first time of the day when tips of the minute arm and the hour arm are moving away from each other the fastest.

Remark: You may assume that the arms of the clock lie in the same plane.