Problem (2/175)

Show that if the orthogonal dimension of a Hilbert space H is finite, it equals the dimension of H regarded as a vector space; conversely, if the latter is finite, show that so is the former.

Solution

Let orthogonal dimension of H finite, say n. So there is a subset $\{e_1, e_2, \ldots, e_n\}$ of H which is total orthonormal in H. But this set is linearly independent and spans H so it is a basis for H, which means that $\dim H = n$.

Let's now suppose $\dim H = n$. Let $\{x_1, x_2, \ldots, x_n\}$ be a basis for H. Apply Gram-Schmidt process to x_1, x_2, \ldots, x_n and let e_1, e_2, \ldots, e_n be the derived vectors. Then $\{e_1, e_2, \ldots, e_n\}$ is total orthonormal in H. Because it is orthonormal and $\text{span}\{e_1, e_2, \ldots, e_n\} = \text{span}\{x_1, x_2, \ldots, x_n\} = H$. So orthogonal dimension of H is n.

Remark 1 $\{e_1, e_2, \ldots, e_n\}$ orthonormal \Rightarrow it is linearly independent.

Let $\alpha_1 e_1 + \ldots + \alpha_n e_n = 0$. Then

$$\langle \alpha_1 e_1 + \ldots + \alpha_n e_n, e_j \rangle = \alpha_j \langle e_j, e_j \rangle = \alpha_j = 0 \text{ for all } j = 1, 2, \ldots, n.$$

Remark 2 For any vectors y_1, y_2, \ldots, y_n,

$$\text{span}\{y_1, y_2, \ldots, y_n\} = \text{span}\{y_1, y_2, \ldots, y_n\}$$

since it is a finite dimensional vector space and any finite dimensional vector space is closed in a normed space, in particular in an inner product space.

Problem (7/175)

Show that if a Hilbert space H is separable, the existence of a total orthonormal set in H can be proved without the use of Zorn’s lemma.

Solution Let M be a countable dense subset of H. Choose a linearly independent subset C in M such that $\text{span} C \supseteq M$ (just remove n^{th} term if it is in the span of first $n - 1$ element for $n \geq 2$ and wlog we may assume first element of M is not 0). Surely C is countable. Apply Gram-Schmidt process to C and let F be the derived set. Then F is total orthonormal in H. Indeed F is orthonormal and $\text{span} F = \overline{\text{span} C} \supseteq M = H$.

Problem (8/175)

Show that for any orthonormal sequence F in a separable Hilbert space H there is a total orthonormal sequence \tilde{F} which contains F.

Solution

Let $Y = \text{span} F$. Since Y is closed $H = Y \oplus Y^\perp$ (see Theorem 3.3-4). Clearly Y^\perp is also separable and indeed it is easy to show it is closed subspace of H. This means that we can view Y^\perp as a Hilbert space and so it has a countable total orthonormal set, say E (see previous question and Theorem 3.6-4). Set $\tilde{F} = F \cup E$. Then \tilde{F} is total orthonormal sequence in H that contains F.

\tilde{F} is orthonormal since F and E are orthonormal and $F \perp E$.

\tilde{F} is total, i.e. $\text{span} \tilde{F} = H$. Given $x \in H$, let $x = y + z$ where $y \in Y$ and $z \in Y^\perp$. Since $\text{span} F \supseteq \text{span} \tilde{F} = Y$ and $\text{span} F \supseteq \text{span} E = Y^\perp$, we obtain $y, z \in \text{span} \tilde{F}$. But $\text{span} \tilde{F}$ is a vector space so $x = y + z \in \text{span} \tilde{F}$.

Problem (9/175)

Let M be a total set in an inner product space X. If $\langle v, x \rangle = \langle w, x \rangle$ for all $x \in M$, show that $v = w$.

Solution

$\langle v, x \rangle = \langle w, x \rangle$ for all $x \in M \Rightarrow \langle v - w, x \rangle = 0$ for all $x \in M \Rightarrow v - w \perp M \Rightarrow v - w = 0 \Rightarrow v = w$ (see Theorem 3.6-2(a)).

Problem (10/175)

Let M be a subset of a Hilbert space H, and let $v, w \in H$. Suppose that $\langle v, x \rangle = \langle w, x \rangle$ for all $x \in M$ implies $v = w$. If this holds for all $v, w \in H$, show that M is total in H.

Solution

$v \perp M \Rightarrow \langle v, x \rangle = 0$ for all $x \in M \Rightarrow \langle v, x \rangle = \langle 0, x \rangle$ for all $x \in M \Rightarrow v = 0$.

So totality of M follows from Theorem 3.6-2(b).

[Prove or disprove: The second part of Theorem 3.6-2 is valid for non-complete inner product spaces.]