Problem (3/245)

If a normed space X is reflexive, show that X' is reflexive.

Solution

Since X is reflexive, we know that all elements g in X'' can be written $g = g_x$ where $g_x(f) = f(x)$. Observe that if $f \in X'$ then G_f is a linear functional on X'' where $G_f(g_x) = g_x(f)$. Our aim is to show that the canonical mapping

$$\tilde{C} : X' \rightarrow X'''$$

defined by $f \mapsto G_f$

is surjective. So let $G \in X'''$, then define $h(x) = G(g_x)$. Then h is a linear and bounded functional on X. Continuity is easy to show and let's see linearity.

$$h(\alpha x + \beta y) = G(\alpha g_x + \beta g_y) = \alpha G(g_x) + \beta G(g_y) = \alpha h(x) + \beta h(y).$$

We claim that $G = G_h$. $G(g_x) = h(x)$ and $G_h(g_x) = g_x(h) = h(x)$. Hence \tilde{C} is surjective equivalently X' is reflexive.

Problem (7/246)

Let Y be a closed subspace of a normed space X such that every $f \in X'$ which is zero everywhere on Y is zero everywhere on the whole space X. Show that then $Y = X$.

Solution

Suppose that $Y \neq X$. So let $x_0 \in X - Y$. Since Y is closed there exists $f \in X'$ such that $f(Y) = 0$ but $f(x_0) \neq 0$ (see lemma 4.6-7). Contradiction.

Problem (8/246)

Let M be any subset of a normed space X. Show that an $x_0 \in X$ is an element of $A = \text{span} M$ if and only if $f(x_0) = 0$ for every $f \in X'$ such that $f|_M = 0$.

Solution

We will show that

$$x_0 \in \text{span} M \iff f(x_0) = 0 \ \forall f \in X' \text{ satisfying } f|_M = 0.$$
⇒ Let \(x_0 \in \text{span}M \) and take arbitrary \(f \in X' \) which satisfies \(f|_M = 0 \). But linearity and continuity of \(f \) implies that
\[
f|_M = 0 \implies f|_{\text{span}M} = 0 \implies f|_{\text{span}X'} = 0.
\]
So \(f(x_0) = 0 \).

⇐ If \(x_0 \notin \text{span}M \), then we know that there is an \(f \in X' \) such that \(f|_{\text{span}M} = 0 \) but \(f(x_0) \neq 0 \) (see lemma 4.6-7). So this means that there exists \(f \in X' \) such that \(f|_M = 0 \) but \(f(x_0) \neq 0 \).

Problem (9/246)

(Total set) Show that a subset \(M \) of a normed space \(X \) is total in \(X \) if and only if every \(f \in X' \) which is zero everywhere on \(M \) is zero everywhere on \(X \).

Solution

This is a direct result of previous question. Or it can be solved in the same way.

Problem (10/246)

Show that if a normed space \(X \) has a linearly independent subset of \(n \) elements, so does the dual space \(X' \).

Solution

Let the set is \(\{x_1, x_2, \ldots, x_n\} \). Then consider the subspaces
\[
Y_1 = \text{span}\{x_2, x_3, \ldots, x_n\} \\
Y_2 = \text{span}\{x_1, x_3, \ldots, x_n\} \\
\vdots \\
Y_n = \text{span}\{x_1, x_2, \ldots, x_{n-1}\}.
\]
Then since \(Y_j \) is finite dimensional it is closed and also \(x_j \notin Y_j \). So we know that there exists \(f_j \in X' \) such that \(f_j \) is zero on \(Y_j \) with \(f_j(x_j) \neq 0 \) for \(j = 1, 2, \ldots, n \). We claim that \(\{f_1, f_2, \ldots, f_n\} \) is linearly independent in \(X' \). Let
\[
\alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n = 0
\]
then
\[
(\alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n)(x_j) = 0 = \alpha_j f_j(x_j) \implies \alpha_j = 0 \text{ for } j = 1, 2, \ldots, n.
\]
So \(\alpha_1 = 0, \alpha_2 = 0, \ldots, \alpha_n = 0 \). That is \(\{f_1, f_2, \cdots, f_n\} \) is a linearly independent set.