Subgraphs, Complements

Definition. Let $G = (V, E)$ be a graph (directed or undirected). Then $G_1 = (V_1, E_1)$ is called a **subgraph** of G if V_1 is a nonempty subset of V, E_1 is a nonempty subset of E, and each edge in E_1 is incident with vertices in V_1.

Examples

\[G = (V, E) \]
\[V = \{a, b, c, d, e\} \]

\[G_1 = (V_1, E_1) \text{ is a subgraph of } G \]
\[V_1 = \{a, b, c, e\} \]

\[G_2 = (V_2, E_2) \]
\[V_2 = \{a, b, c, d\} \]

Definition. Let V be a set of n vertices. The **complete graph** on V, denoted K_n, is a loop-free undirected graph where for all $a, b \in V$, $a \neq b$, there is an edge $\{a, b\}$.

Examples

\[K_2 \]

\[K_3 \]

\[K_4 \]

Remark: Let $K_n = (V, E_n)$. Then $|E_n| = \frac{n(n-1)}{2}$.

Definition. Let G be a loop-free undirected graph on n vertices. The **complement of G**, denoted \overline{G}, is the subgraph of K_n consisting of the n vertices.
in \(G \) and all edges that are not in \(G \).

Remark. Let \(G = (V, E) \), \(|V| = n \). Then, if \(K_n = (V, E_n) \), \(\overline{G} = (V, E_n \setminus E) \).

Example 1. Let \(G \) be an undirected graph with \(n \) vertices. If the number of edges in \(G \) is equal to the number of edges in \(\overline{G} \), how many edges \(G \) has?

Solution.
Let \(G = (V, E) \), \(|V| = n \), \(|E| = e \). Then \(\overline{G} = (V, E_n \setminus E) \). Therefore, \(|E_n \setminus E| = \frac{n(n-1)}{2} - e \). We have,
\[
e = \frac{n(n-1)}{2} - e, \quad \text{i.e.} \quad 2e = \frac{n(n-1)}{2}, \quad \text{i.e.} \quad e = \frac{n(n-1)}{4}.
\]

Example 2. Give an example of a graph on \(4 \) vertices s.t. the number of edges in \(G \) is the same as the number of edges in \(\overline{G} \).

Solution.

\[
\begin{align*}
G &= (V, E) \\
\overline{G} &= (V, E_n \setminus E)
\end{align*}
\]

Example 3. How many subgraphs \(H = (V, E) \) of \(K_6 \) satisfy \(|V| = 3 \)?

Solution. We can choose 3 vertices out of 6 in \(C(6,3) = \frac{6!}{3!3!} = 20 \) different ways. Let us choose \(x, y, z \) vertices.

- 0 edges: 1 possibility
- 1 edge: 3 possibilities
- 2 edges: 3 possibilities
- 3 edges: 1 possibility
Totally there are $20 \times (1+3+3+1) = 160$ different subgraphs of K_6 with 3 vertices.

Multigraphs.

Definition. Let V be a finite nonempty set. We say that the pair (V, E) determines a multigraph G with vertex set V and edge set E if, for some $x, y \in V$, there are two or more edges in E of the form
- (a) (x, y) (for a directed multigraph), or
- (b) $\{x, y\}$ (for an undirected multigraph).

Example.

![Diagram of multigraph](image)

Definition. Let G be an undirected graph or multigraph. For each vertex v of G, the degree of v, $\deg(v)$, is the number of edges in G that are incident with v. A loop at a vertex v is considered as two incident edges for v.

Example.

![Diagram of graph with vertex degrees](image)

- $\deg(e) = 5$
- $\deg(d) = 3$
- $\deg(a) = 2$
- $\deg(f) = 0$

Remark. If $G = (V, E)$ is an undirected graph or multigraph, then $\sum_{v \in V} \deg(v) = 2|E|$.

(3)
Remark 2. For any undirected graph or multigraph, the number of vertices of odd degree must be even.

Example. Determine $|V|$ for the following graphs or multigraphs:
(a) G has 9 edges and all vertices have degree 3.
(b) G has 10 edges with two vertices of degree 4 and all others of degree 3.

Solution: By Remark 1,
(a) $3 |V| = 2 \cdot |E| = 2 \cdot 9 = 18 \Rightarrow |V| = 6.$
(b) $4 \cdot 2 + 3 (|V| - 2) = 2 \cdot |E| = 2 \cdot 10 = 20 \Rightarrow |V| = 6.$

Example. Is it possible to have a graph with 15 edges and such that all vertices have degree 4.

Solution. If such graph $G = (V,E)$ exists then $4 |V| = 2 \cdot |E| = 2 \cdot 15 = 30$. Since 30 is not divisible by 4 then such graph does not exist.

Weighted graphs.

Definition. Let $G = (V,E)$ be a loop-free connected directed graph. To each edge $e = (a,b)$ we assign a positive real number called the weight of e, denoted by $\text{wt}(e)$, or $\text{wt}(a,b)$. If $x,y \in V$ but $(x,y) \notin E$ we define $\text{wt}(x,y) = \infty$.

Graph $G = (V,E)$, where for each edge the number is assigned (as the weight of this edge) is called a weighted graph.

\[
\begin{align*}
\text{wt}(a,b) &= 11, & \text{wt}(b,a) &= \infty, \\
\text{wt}(c,b) &= 3, & \text{wt}(a,c) &= \infty. \\
\text{wt}(d,a) &= 5, & \text{wt}(a,d) &= 7.
\end{align*}
\]
Let $G = (V, E)$ be a directed weighted graph. For each $e = (x, y) \in E$, $w(e)$ may represent the length of a road from x to y, the time it takes to travel on this road from x to y, the cost of traveling from x to y on this road.

Definition. For $a, b \in V$, suppose that $v_1, v_2, \ldots, v_n \in V$ and that the edges $(a, v_1), (v_1, v_2), \ldots, (v_n, b)$ provide a directed path in $G = (V, E)$ from a to b. The **length of this path** is defined as

$$w_t(a, v_1) + w_t(v_1, v_2) + \ldots + w_t(v_n, b).$$

The length of a shortest directed path in G from a to b is called the *(shortest) distance from a to $b* and denoted by $d(a, b)$.

Agreement:
1. $\forall a \in V \quad d(a, a) = 0$
2. if there is no path in G from a to b then we define $d(a, b) = \infty$.

Properties of $d(a, b)$: Let $v_0 \in V, S \subseteq V$

Define the distance from v_0 to S by

$$d(v_0, S) = \min_{v \in S} \{ d(v_0, v) \}$$

If $d(v_0, S) < \infty$ then $\exists V_{m+1} \subseteq S$ s.t. $d(v_0, S) = d(v_0, V_{m+1})$.

Here P: $(V_0, V_1), (V_1, V_2), \ldots, (V_m, V_{m+1})$ is a shortest directed path in G from v_0 to \overline{S}, let us show that

1. $V_0, V_1, V_2, \ldots, V_m \subseteq \overline{S}$ and

2. $P': (V_0, V_1), (V_1, V_2), \ldots, (V_{k-1}, V_k)$ is a shortest directed path from v_0 to V_k, for each $1 \leq k \leq m$.

Proof of 1: Assume that $\exists V_i, 1 \leq i \leq m$ s.t. $V_i \subseteq \overline{S}$. Then $P'': (V_0, V_1), (V_1, V_2), \ldots, (V_{i-1}, V_i)$ is a path from v_0 to an element in \overline{S}.
Therefore, \(d(\bar{v}_0, \overline{S}) \leq wt(\bar{v}_0, u_i) + \ldots + wt(u_{i-1}, v_i) < \)
\(< wt(\bar{v}_0, u_i) + \ldots + wt(u_{i-1}, v_i) + wt(u_i, v_{i+1}) + \ldots + wt(u_m, v_{m+1}) \)

It contradicts the definition of \(d(\bar{v}_0, \overline{S}) \). So, our assumption was wrong. Hence, among \(\bar{v}_0, \bar{v}_1, \ldots, v_m \) we do not have an element from \(\overline{S} \).

Proof of 2): Assume that \(d(\bar{v}_0, v_k) < wt(\bar{v}_0, v_i) + \ldots + wt(v_k, v_i) \).

Then \(d(\bar{v}_0, \overline{S}) < wt(\bar{v}_0, v_k) + wt(v_k, v_{k+1}) + \ldots + wt(v_m, v_{m+1}) \).

It contradicts the definition of \(\overline{S} \). Hence, our assumption was wrong. Therefore, \(P' \) is a shortest directed path from \(\bar{v}_0 \) to \(v_k \).

We have, from (1) and (2),
\[d(\bar{v}_0, \overline{S}) = \min \{ d(\bar{v}_0, u) + wt(u, w) \} \]
where minimum is evaluated over all \(u \in S \), \(v \in \overline{S} \).

If a minimum occurs for \(u = x \) and \(w = y \) then
\(d(\bar{v}_0, y) = d(\bar{v}_0, x) + wt(x, y) \)
is the shortest distance from \(\bar{v}_0 \) to \(y \).

Problem. Let \(G = (V, E) \) be a weighted graph with \(|V| = n \).

Let \(\bar{v}_0 \) be a fixed vertex. Find the shortest distance from \(\bar{v}_0 \) to all other vertices in \(G \).

To solve this problem, follow the following procedure (discovered by Dijkstra).

Step 1. Assign to \(\bar{v}_0 \) the label \((-\infty, 0)\).

Step 2.
(a) For each labeled vertex \(u(x, d) \) and for each unlabeled vertex \(v \) adjacent to \(u \) (there is an edge \((u, v) \)) compute \(d + wt(u, v) \).

(b) For each labeled vertex \(u(x, d) \) and unlabeled adjacent vertex \(v \) giving minimum \(d' = d + wt(u, v) \), assign to \(v \) the label \((x, d') \). If a vertex can be labeled \((x, d') \) for various vertices \(x \), make any choice.
Let us find distances from A to all other vertices for the following weighted graph.

First, give A the label (−, 0). There are three edges incident with A with weights 7, 5, 8. Since \(d = 0 \), vertex H gives the smallest value \(d + \text{wt}(AH) \), so H acquires the label (A, 5).

Now we repeat Step 2 for the two vertices labeled so far. There are two unlabeled vertices adjacent to the vertex A. The numbers \(d + \text{wt}(e_3) \) are 0 + 7 = 7 and 0 + 8 = 8. There are also two unlabeled vertices adjacent to the other labeled vertex H, and for these \(d + \text{wt}(e_3) \) are 5 + 4 = 9 and 5 + 5 = 10. The smallest \(d + \text{wt}(e_3) \) is 7 corresponding to the labeled vertex A and the unlabeled \(v = B \). Thus, B is labeled (A, 7). Again we repeat step 2.

Now there are three labeled vertices:

- A → one adjacent vertex G: \(d + \text{wt}(e_3) = 0 + 8 = 8 \)
- B → adjacent unlabeled vertex C: \(d + \text{wt}(e_3) = 7 + 8 = 15 \)
- H → one adjacent unlabeled vertex I: \(d + \text{wt}(e_3) = 7 + 3 = 10 \)

The smallest \(d + \text{wt}(e_3) \) is 8, corresponding to edge G. So G acquires the label (A, 8).

We repeat step 2. There are 4 labeled vertices A, B, H, G. All vertices adjacent to A, H are already labeled. We looked only for B and G:

- B → two adj. unl. vertices: C: \(d + \text{wt}(e_3) = 15 \)
- H → two adj unl. vertices: I: \(d + \text{wt}(e_3) = 10 \)

The minimum \(d + \text{wt}(e_3) \) occurs only with I and either edge \(I, B, I^2 \) or \(I, G, I^3 \). We can therefore assign to I either the label (B, 10) or (G, 10). We opt for (B, 10).

\[\text{Week 9} \]
Repeating Step 2, we have to look only for vertices B, G, I:

B → adj. unl. C → \(d + w(e_3) = 7 + 8 = 15 \)

G → adj. unl. F → \(d + w(e_3) = 7 + 8 = 15 \)

I → adj. unl. C → \(d + w(e_3) = 10 + 5 = 15 \)

\(Y \) → \(d + w(e_3) = 10 + 7 = 17 \)

We have to label two vertices C and F. We assign labels (B, 15) for C and (G, 15) for F.

We have to look now at vertices C, I, F:

C → adj. unl. D → \(d + w(e_3) = 15 + 8 = 23 \)

I → adj. unl. J → \(d + w(e_3) = 10 + 7 = 17 \)

F → adj. unl. J → \(d + w(e_3) = 15 + 10 = 25 \)

\(E \) → \(d + w(e_3) = 15 + 6 = 21 \)

We label \(Y \) with (I, 17).

Next, we look at C, F, J:

C → adj. unl. D → \(d + w(e_3) = 23 \)

F → adj. unl. E → \(d + w(e_3) = 24 \)

\(Y \) → adj. unl. D → \(d + w(e_3) = 17 + 3 = 20 \)

We label D with (Y, 20).

Finally, consider D, F:

D → adj. unl. E → \(d + w(e_3) = 20 + 4 = 24 \)

F → adj. unl. E → \(d + w(e_3) = 15 + 6 = 21 \)

We label E with (F, 21).

Since E was labeled last, the algorithm has actually found the length of a shortest route from A to any vertex.

For example,

A → B → I → Y is a shortest path to Y of length 17.

A → G → F → E is a shortest path to E, of length 21.
Problem 1: Apply The Traveling Salesman's Procedure to find the length of the shortest path from A to every other vertex. Show the final labels on all vertices. Also find the shortest path from A to H.

1. \(A \rightarrow \text{adj. unl.} \quad B \rightarrow 5 \quad \text{d+w+l+e+3} \)
 \(\text{d+w+l+e+3} \)
 \(C \rightarrow 2 \)
 \(E \rightarrow 10 \)
 \(\text{label C with (A,2)} \)

2. \(A \rightarrow \text{adj. unl.} \quad B \rightarrow 5 \quad \text{d+w+l+e+3} \)
 \(\text{d+w+l+e+3} \)
 \(D \rightarrow 4 \)
 \(E \rightarrow 10 \)
 \(\text{C} \rightarrow \text{adj. unl.} \quad E \rightarrow 2+7=9 \)
 \(\text{label D with (A,4)} \)

3. \(A \rightarrow \text{adj. unl.} \quad B \rightarrow 5 \quad \text{d+w+l+e+3} \)
 \(\text{d+w+l+e+3} \)
 \(D \rightarrow \text{adj. unl.} \quad G \rightarrow 6 \quad \text{E \rightarrow 10} \)
 \(B \rightarrow 12 \)
 \(C \rightarrow \text{adj. unl.} \quad E \rightarrow 9 \)
 \(F \rightarrow 7 \)
 \(\text{label B with (A,5)} \)

4. We have to look at \(A, B, C, D \).
 \(B \) does not have unl. adj. vertices.
 We are left with \(A, C, D \); i.e., see 3 without edge \((A,B)\).
 Then we have to label \(G \) with \((D,6)\).

5. \(A \rightarrow \text{adj. unl.} \quad E \rightarrow 10 \)
 \(\text{D} \rightarrow \text{adj. unl.} \quad E \rightarrow 10 \)
 \(C \rightarrow \text{adj. unl.} \quad E \rightarrow 9 \)
 \(\text{F} \rightarrow 7 \)
 \(\text{G} \rightarrow \text{adj. unl.} \quad E \rightarrow 8 \)
 \(\text{label F with (C,7)} \)

6. \(A \rightarrow E \rightarrow 10 \)
 \(D \rightarrow E \rightarrow 10 \)
 \(C \rightarrow E \rightarrow 9 \)
 \(G \rightarrow E \rightarrow 9 \)
 \(H \rightarrow 9 \)
 \(F \rightarrow E \rightarrow 10 \)
 \(H \rightarrow 9 \)
 \(I \rightarrow 11 \)

 \(\text{label E with (G,8)} \)

7. \(G \rightarrow H \rightarrow 9 \)
 \(F \rightarrow H \rightarrow 9 \)
 \(I \rightarrow 11 \)
 \(E \rightarrow H \rightarrow 11 \)

 \(\text{label H with (G,9)} \)
 \(\text{or} \quad (F,9) \)

8. \(F \rightarrow I \rightarrow 11 \)
 \(H \rightarrow I \rightarrow 14 \)
 \(\text{label I with (F,11)} \)

9. Answer: The shortest path from A to H is \(A \rightarrow D \rightarrow G \rightarrow H \), of length 9.