(1) Compute
(a) \(\phi(300) \).

300 = 2^2 \cdot 3 \cdot 5^2; hence \(\phi(300) = \phi(2^2) \cdot \phi(3) \cdot \phi(5^2) = 2 \cdot 2 \cdot 4 \cdot 5 = 80 \).

(b) the order of 2 mod 7.

We have 2^2 \equiv 4 \mod 7 and 2^3 \equiv 1 \mod 7, hence the order of 2 mod 7 is equal to 3.

(c) 88! mod 89.

By Wilson’s theorem, we have 88! \equiv -1 \mod 89.

(2) Give the definition
(a) of a primitive root: an element \(g \in (\mathbb{Z}/m\mathbb{Z})^\times \) with order \(\phi(m) \); equivalently: an element whose powers give every element of \((\mathbb{Z}/m\mathbb{Z})^\times \).

(b) of the Legendre symbol.

We say that \(\left(\frac{a}{p} \right) = +1 \) or \(= -1 \) for odd primes \(p \) and integers \(a \) not divisible by \(p \) according as \(a \) is a square mod \(p \) or not.

(3) Explain why \(\phi(p^2) = p(p - 1) \) for primes \(p \).

The elements of \((\mathbb{Z}/p^2\mathbb{Z})^\times \) are those from 1, 2, \ldots, \(p^2 \) that are not divisible by \(p \). Since there are \(p^2 \) elements in the list, and since exactly the \(p \) elements \(p, 2p, \ldots, p^2 \) are divisibly by \(p \), we have \(\phi(p^2) = p^2 - p = p(p - 1) \).

(4) Compute \(2^{2000} \mod p \) for the prime \(p = 4001 \).

By Euler’s criterium, we have \(2^{(p-1)/2} \equiv \left(\frac{2}{p} \right) \mod p \). Using the second supplementary law and observing that 4001 \(\equiv 1 \mod 8 \) we see that \(2^{2000} \equiv 1 \mod p \).

(5) Describe how RSA works (how are private and public keys chosen, how is a message encrypted/decrypted, why does it work?).

See the notes. By “why it works” I meant the verification that \(c^d \equiv m \mod N \).
(6) Compute $24^{100} \mod 99$ (Hint: Chinese Remainder Theorem).

It is sufficient to compute $x = 24^{100} \mod 9$ and $\mod 11$. Since $3 \mid 24$, we have $9 \mid x$, hence $x \equiv 0 \mod 9$. On the other hand, $x = 24^{100} \equiv 2^{100} \equiv (2^{10})^{10} \equiv 1 \mod 11$ because of Fermat’s little theorem. Solving the linear system $x \equiv 0 \mod 9$ and $x \equiv 1 \mod 11$ using Bezout or by trial and error gives $x \equiv 45 \mod 99$.

(7) Compute $(\frac{105}{1031})$ (1031 is prime)

(a) using quadratic reciprocity for the Legendre symbol only;

$$
\left(\frac{105}{1031} \right) = \left(\frac{3}{1031} \right) \left(\frac{5}{1031} \right) \left(\frac{7}{1031} \right) = (-1)^2 \left(\frac{1031}{3} \right) \left(\frac{1031}{5} \right) \left(\frac{1031}{7} \right) = \left(\frac{2}{3} \right) \left(\frac{1}{5} \right) \left(\frac{1}{7} \right) = (-1)(+1)(+1) = -1.
$$

(b) using the Jacobi symbol.

$$
\left(\frac{105}{1031} \right) = \left(\frac{1031}{105} \right) = \left(\frac{19}{105} \right) = \left(\frac{19}{19} \right) = (-1) = -1.
$$

Here we have used the first supplementary law and the fact that $9 = 3^2$ is a square.

(8) Use Gauss’s Lemma to compute $(\frac{-3}{13})$ for primes $p = 6n + 1$.

Originally I wanted you to compute $(\frac{-3}{p})$ for primes $p = 6n + 1$ and then chose the simpler problem of computing $(\frac{-3}{13})$, but I forgot to delete the condition “for primes $p = 6n + 1$”.

Here goes: take the half system $\{1, 2, 3, 4, 5, 6\} \mod 13$. Then

\begin{align*}
-3 \cdot 1 & \equiv -3, & -3 \cdot 4 & \equiv +1, \\
-3 \cdot 2 & \equiv -6, & -3 \cdot 5 & \equiv -2, \\
-3 \cdot 3 & \equiv +4, & -3 \cdot 6 & \equiv -5,
\end{align*}

where all the congruences are mod 13. Since there are 4 minus signs, we conclude that $(\frac{-3}{13}) = (-1)^4 = +1$.

(9) Let $p = a^4 + 4$ be a prime. Show that $(\frac{a}{p}) = 1$.

Clearly a must be odd. Since $p = a^4 + 4 \equiv 2^2 \mod a$ we see that $(\frac{2}{p}) = +1$. Next $p \equiv 1 \mod 4$ since $a^2 \equiv 1 \mod 4$ for odd values of a. By the reciprocity law we have $(\frac{a}{p}) = (\frac{p}{a}) = 1$.

A different solution is to observe that $a^4 + 4 = (a^2 + 2)^2 - 4a^2 = (a^2 - 2a + 2)(a^2 + 2a + 2)$ is prime only if $a = \pm 1$ (then $p = 5$), and here $(\frac{a}{p}) = +1$ can be verified directly.

(10) Let a be a quadratic residue modulo p, where p is an odd prime. Show that a is not a primitive root mod p.

By definition, a is a primitive root if and only if it has order $p - 1$ in $(\mathbb{Z}/p\mathbb{Z})^\times$. But since $(\frac{a}{p}) = +1$, we have $a^{(p-1)/2} \equiv +1 \mod p$ by Euler’s criterion, hence the order of a quadratic residue divides $\frac{p-1}{2}$. Thus a is never a primitive root.