1) Use the Intermediate Value Theorem to prove that there is a number \(c \) such that \(c^2 = 2 \).

2) Suppose that a function \(f \) is continuous on \([0, 1]\) and that \(0 \leq f(x) \leq 1 \) for every \(x \in [0, 1] \). Show that there must exist a number \(c \in [0, 1] \) such that \(f(c) = c \). (\(c \) is called the fixed point of \(f \)).

3) \(\lim_{x \to 0} \frac{\cos^3 5x - \cos^3 3x}{\sin^2 2x} = ? \)

4) Does the graph of \(g(x) = \begin{cases} x \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \) have a tangent line at \(x = 0 \)? Explain your answer.

5) Find an equation of the tangent line of the curve \(y = \sqrt{x} \) which is perpendicular to the line \(2x + 3y = 5 \).

6) A particle moves from right to left along the parabola \(y = \sqrt{-x} \) in such a way that its \(x \)-coordinate (measured in meters) decreases at the rate of 8 m/sec. How fast is the angle of inclination \(\theta \) of the line joining the particle to the origin changing when \(x = -4 \).

\textbf{Hint: Sketch the graph of the given function.}

7) A spherical balloon is inflated with helium at the rate of \(100 \pi \) ft\(^3\)/min. How fast is the balloon's radius increasing at the instant the radius is 5 ft? How fast is the surface area increasing?

8) Let \(f \) be a differentiable function such that \(f(1) = 1 \) and the slope of the tangent line to the curve \(y = f(x) \cdot f(xy)^2 \) at the point \((1, 1)\) is 3. Find all possible values of \(f'(1) \).

9) Show that if \(u \) is differentiable at 0, then the limit \(\lim_{t \to 0} \frac{u(3t) - u(-2t)}{t} \) exists.

10a) Find \(\frac{dy}{dx} \) for \(y = \left(\frac{2\sqrt{x}}{2\sqrt{x} + 1} \right)^3 \).

10b) Find \(\frac{dy}{dx} \) for \(y = (3 + \cos^3(3x + \sin(2x)))^7 \).