1) Prove that a square matrix A is singular if and only if 0 is an eigenvalue of A.

2) What must be c if the matrix

$$
\begin{bmatrix}
3 & -1 & 1 \\
0 & 2 & c \\
0 & 1 & -1
\end{bmatrix}
$$

has three distinct real eigenvalues?

3) Given the matrix $A = \begin{bmatrix} 4 & 2 & -1 \\ 2 & 1 & -2 \\ 3 & 2 & 0 \end{bmatrix}$.

 a) Find its characteristic polynomial.

 b) Use the characteristic polynomial to evaluate the determinant of A.

 c) Use the Cayley-Hamilton Theorem to find the inverse of A.

 d) Compute eigenvalues and corresponding eigenvectors of A.

 e) If possible find an invertible matrix P such that $P^{-1}AP$ is diagonal and write this diagonal matrix.

4) Find the general solutions of the following systems of linear differential equations:

 a) \[\frac{dx_1}{dt} = 2x_1 + 4x_2 \]

 \[\frac{dx_2}{dt} = x_1 - x_2 \]

 b) \[\frac{dx_1}{dt} = -x_3 \]

 \[\frac{dx_2}{dt} = x_1 \]

 \[\frac{dx_3}{dt} = -14x_1 - 8x_2 + 7x_3 \]
\begin{align*}
\frac{dx_1}{dt} &= 4x_1 - 12x_2 - x_3 \\
\frac{dx_2}{dt} &= x_1 - 3x_2 - x_3 \\
\frac{dx_3}{dt} &= x_1 - 4x_2
\end{align*}

c) The \(nxn \) matrix \(A \) is said to be idempotent if \(A^2 = A \). If \(\lambda \) is an eigenvalue of such a matrix, show that \(\lambda \) is either 0 or 1. What can be said about a non-singular idempotent matrix?

6) If \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the eigenvalues of the \(nxn \) matrix \(A \) and \(c \) is a scalar, show that the matrix \(A + cI \) has eigenvalues \(\lambda_1 + c, \lambda_2 + c, \ldots, \lambda_n + c \).

7) A certain \(4x4 \) real matrix is known to have these properties:
 1. Two of the eigenvalues of \(A \) are \(\lambda_1 = 3 \) and \(\lambda_2 = 2 \).
 2. The number 3 is an eigen value of the matrix \(A + 2I \).
 3. \(\det A = 12 \).

 Use this information to answer the following questions about \(A \).
 (i) What are the other two eigenvalues of \(A \)?
 (ii) What is the characteristic polynomial of \(A \)?
 (iii) What is the characteristic polynomial of \(A^{-1} \)?

8) The characteristic polynomial of a certain \(3x3 \) matrix is \(p(\lambda) = \lambda^3 - 7\lambda^2 + 5\lambda - 9 \). Use this fact to express \(\text{adj} A \) as a linear combination of \(A^2, A \) and \(I \).