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SOLUTIONS OF MIDTERM 1 
 
 
1)  ( 10+10 pts.) 

Consider the initial value problem 
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a) Using the Existence and Uniqueness Theorem show that the given initial value 
problem has a unique solution. 

 
               Solution: 
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except the points 0=y  and .2=y Thus we can find a rectangle R such as 
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continuous in R. Thus by the Existence and Uniqueness Theorem there exists a unique 
solution around the point (2,1). 
 
 
 
 
 
 

b) Solve the initial value problem and find this unique solution. 
 
Solution: 
 

The equation 
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dy  is separable. 

     We obtain the equation   xdxdyyy =− )126( 2  and it gives the result  
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2)( 20 pts.) Solve the following initial value problem 
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    Solution: 
This equation is Bernoulli type. 
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Put 2
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Use the substitution 
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3)(20 pts.) Consider the initial value problem 
           ( ) 0234 2 =++ xydydxyx , .1)1( =y  

              Show that the given differential equation is not exact. Find an integrating factor and    
           solve the initial value problem. 
           Solution: 
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Multiplying the given equation by 2x   
             ( ) 0234 3223 =++ ydyxdxyxx  
           we get an exact equation (check it!). 
    Thus ( )∫ ++=⇒++= )(),()(34),( 234223 ygyxxyxFygdxyxxyxF . 
    On the other hand 
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Using the initial condition 1)1( =y 2−=⇒ C  and we conclude the result 
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Solution: The solution of this question is not given in details but you are expected to 
solve it in details. 
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Using cIbAaAA ++= 23 and identifying the first row we get 
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with solution .15,12,5 =−== cba  
Finally the relation has to be verified for all the other entries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
5)(20 pts.) The elementary row operations 
                31 4: RE  , 
                ),(: 322 RRSWAPE  ,  
               123 2: RRE +−  
       are applied in the given order to a 33X  real matrix A and the identity matrix I is obtained. 
a)( 6 pts.) Express 1−A  as a product of elementary matrices. 
Solution: 
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b)( 7 pts.) Find .1−A  
Solution: 
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Solution: The solution will be BAX 1−= = .
2

12
23

3
2
1

010
400
801

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
 

Thus 2,12,23 ==−= zyx  is the unique solution. 
    


