MATH 225 Spring 2007-2008 SOLUTIONS OF MIDTERM 1

1) (10+10 pts.)

Consider the initial value problem

$$\begin{cases} \frac{dy}{dx} = \frac{x}{6y(y-2)}\\ y(2) = 1 \end{cases}$$

a) Using the Existence and Uniqueness Theorem show that the given initial value problem has a unique solution.

Solution:

The functions $f(x, y) = \frac{x}{6y(y-2)}$ and $f_y(x, y) = -\frac{12x(y-1)}{[6y(y-2)]^2}$ are continuous everywhere except the points y = 0 and y = 2. Thus we can find a rectangle R such as

 $R = \left\{ (x, y) | |x - 2| < 1, |y - 1| < \frac{1}{2} \right\}$ around the point (2,1) such that f(x, y) and $f_y(x, y)$ are continuous in R. Thus by the Existence and Uniqueness Theorem there exists a unique solution around the point (2,1).

b) Solve the initial value problem and find this unique solution.

Solution:

The equation $\frac{dy}{dx} = \frac{x}{6y(y-2)}$ is separable. We obtain the equation $(6y^2 - 12y)dy = xdx$ and it gives the result $2y^3 - 6y^2 = \frac{x^2}{2} + C$. Using the initial point y(2) = 1, C = -6. Thus $2y^3 - 6y^2 - \frac{x^2}{2} + 6 = 0$ is the unique solution of this problem. 2)(20 pts.) Solve the following initial value problem

$$x\frac{dy}{dx} + y = (xy)^{\frac{3}{2}}, y(1) = 4.$$

Solution:

This equation is Bernoulli type.

(1)
$$\frac{dy}{dx} + \frac{1}{x}y = x^{\frac{1}{2}}y^{\frac{3}{2}}$$
 with $n = \frac{3}{2}$.

Multiplying the equation (1) by $y^{-3/2}$,

$$y^{-\frac{3}{2}}\frac{dy}{dx} + \frac{1}{x}y^{-\frac{1}{2}} = x^{\frac{1}{2}}.$$

Let
$$v = y^{-\frac{1}{2}}$$
. Then $\frac{dv}{dx} = -\frac{1}{2}y^{-\frac{3}{2}}\frac{dy}{dx} \Rightarrow y^{-\frac{3}{2}}\frac{dy}{dx} = -2\frac{dv}{dx}$.

Thus

(2)
$$-2\frac{dv}{dx} + \frac{1}{x}v = x^{\frac{1}{2}} \Rightarrow \frac{dv}{dx} - \frac{1}{2x}v = -\frac{1}{2}x^{\frac{1}{2}}$$

is a linear equation with an integrating factor $\rho(x) = e^{\int -\frac{1}{2x}dx} = x^{-\frac{1}{2}}$. Multiply the equation (2) by $\rho(x)$ and obtain

$$\frac{d}{dx} \left(x^{-\frac{1}{2}} v \right) = -\frac{1}{2} \Rightarrow x^{-\frac{1}{2}} v = -\frac{1}{2} x + C \Rightarrow v = -\frac{1}{2} x^{\frac{3}{2}} + C x^{\frac{1}{2}}.$$

Put $v = y^{-\frac{1}{2}}:$
 $y^{-\frac{1}{2}} = -\frac{1}{2} x^{\frac{3}{2}} + C x^{\frac{1}{2}}.$ To find C use the initial condition $y(1) = 4 \Rightarrow C = 1.$
Thus $y = \frac{1}{\left(-\frac{1}{2} x^{\frac{3}{2}} + x^{\frac{1}{2}}\right)^2}.$

OR

Use the substitution $v = xy \Rightarrow y = \frac{v}{x} \Rightarrow \frac{dy}{dx} = \frac{-1}{x^2}v + \frac{1}{x}\frac{dv}{dx}$ and equation (1) becomes $\frac{dv}{dx} = v^{\frac{3}{2}}$ and the rest is the standard application of the separable differential equations.

3)(20 pts.) Consider the initial value problem

 $(4x+3y^2)dx+2xydy=0, y(1)=1.$

Show that the given differential equation is not exact. Find an integrating factor and solve the initial value problem.

Solution:

Since
$$\frac{\partial M}{\partial y} = 6y \neq \frac{\partial N}{\partial x} = 2y$$
 the given equation is not exact.
But $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = \frac{2}{x}$ depends on x only. Therefore an integrating factor is
 $e^{\int \frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] dx} = x^2$. Multiplying the given equation by x^2
 $(4x^3 + 3x^2y^2) dx + 2x^3y dy = 0$
we get an exact equation (check it!).
Thus $F(x, y) = \int (4x^3 + 3x^2y^2) dx + g(y) \Rightarrow F(x, y) = x^4 + x^3y^2 + g(y)$.

On the other hand

$$\frac{\partial F}{\partial y} = 2x^3y + g'(y) = N(x, y) = 2x^3y \Rightarrow g'(y) = 0 \Rightarrow g(y) = C.$$

It gives $x^4 + x^3y^2 + C = 0.$

Using the initial condition $y(1) = 1 \Rightarrow C = -2$ and we conclude the result $x^4 + x^3y^2 - 2 = 0$.

4)(20 pts.) Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix}$$
. Calculate a, b, c such that $A^3 = aA^2 + bA + cI$.

Solution: The solution of this question is not given in details but you are expected to solve it in details.

$$A^{2} = \begin{bmatrix} -2 & 0 & 5 \\ 5 & -3 & -2 \\ 0 & 9 & 6 \end{bmatrix}, A^{3} = \begin{bmatrix} -7 & 12 & 13 \\ 1 & -12 & 2 \\ 12 & 21 & 9 \end{bmatrix}.$$

Using $A^3 = aA^2 + bA + cI$ and identifying the first row we get $\begin{cases}
-2a + b + c = -7 \\
-b = 12 \\
5a + b = 13
\end{cases}$ with solution a = 5, b = -12, c = 15.

Finally the relation has to be verified for all the other entries.

5)(20 pts.) The elementary row operations

$$E_1: 4R_3$$
,
 $E_2: SWAP(R_2, R_3)$,
 $E_3: -2R_2 + R_1$

are applied in the given order to a 3X3 real matrix A and the identity matrix I is obtained. a)(6 pts.) Express A^{-1} as a product of elementary matrices. Solution:

 $A^{-1} = E_3 E_2 E_1$

b)(7 **pts.**) Find
$$A^{-1}$$
.
Solution:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{4R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} = E_1.$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{SWAP(R_2, R_3)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_2.$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-2R_2 + R_1} \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_3.$$

$$A^{-1} = E_3 E_2 E_1 = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -8 \\ 0 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}$$
c) (7 **pts.**) If $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ find the unique solution of the system $AX = B$.

Solution: The solution will be $X = A^{-1}B = \begin{bmatrix} 1 & 0 & -8 \\ 0 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -23 \\ 12 \\ 2 \end{bmatrix}.$

Thus x = -23, y = 12, z = 2 is the unique solution.