Question 1. (a) Let \(B = \begin{bmatrix} 1 & 4 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \) and \(C = \begin{bmatrix} 1 & 0 & 0 \\ 9 & 2 & 0 \\ 8 & 7 & 1 \end{bmatrix} \). Compute the following determinants:

\[
\begin{align*}
\det\left(\frac{1}{2}B^{12}\right), & \quad \det(3C^{-1}), & \quad \det(B^{19}C^3), & \quad \det\left((2B)C^7\right).
\end{align*}
\]

(b) Let \(A \) be a \(3 \times 3 \) matrix with \(\det(A) = -1 \). Express the matrix \(\text{adj}(2A) \) in terms of \(A^{-1} \).

Solution: (a): As \(B \) and \(C \) are triangular matrices we easily calculate their determinants as the products of entries on the main diagonal of them. Indeed, \(\det(B) = -1 \) and \(\det(C) = 2 \). Then, by the properties of determinant function we have:

\[
\det\left(\frac{1}{2}B^{12}\right) = \left(\frac{1}{2}\right)^{12}\det(B)^{12} = \frac{1}{8}
\]

\[
\det(3C^{-1}) = 3^3\frac{1}{\det(C)} = \frac{27}{2}
\]

\[
\det(B^{19}C^3) = (\det(B))^{19}(\det(C))^3 = (-1)^{19}(2)^3 = (-1)(8) = -8.
\]

\[
\det\left((2B)C^7\right) = \det\left((2B)C^7\right) = 2^3\det(B)\det(C) = 2^3(-1)(2) = -16
\]

(b): Recall that for any square matrix \(B \) we have the formula

\[
\text{adj}(B)B = \det(B)I.
\]

Putting \(B = 2A \) we get

\[
\text{adj}(2A)(2A) = \det(2A)I_3 = 2^3\det(A)I_3 = -8I_3.
\]

This gives:

\[
\text{adj}(2A)A = -4I_3 \implies \text{adj}(2A)A A^{-1} = -4I_3 A^{-1}.
\]

Consequently,

\[
\text{adj}(2A) = -4A^{-1}.
\]
Question 2. Let $M_{2 \times 2}$ be the vector space of all 2×2 matrices whose entries are real numbers, and let W be the subset $\{A \in M_{2 \times 2} : A^T = -A\}$ of $M_{2 \times 2}$.

(i) Show that W is a subspace of $M_{2 \times 2}$.

(ii) Find a basis for W. What is the dimension of W?

Solution: (i): As $0_{2 \times 2}^T = -0_{2 \times 2}$, the set W is a nonempty subset of $M_{2 \times 2}$.

Take any two elements A and B from W. Then, $A^T = -A$ and $B^T = -B$, so

$$(A + B)^T = A^T + B^T = (-A) + (-B) = -(A + B),$$

implying that $A + B \in W$. Thus W is closed under addition.

Take any element A from W and any real number c. Then, $A^T = -A$ and so

$$(cA)^T = cA^T = c(-A) = -(cA),$$

implying that $cA \in W$. Thus W is closed under scalar multiplication.

(b): An element $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of $M_{2 \times 2}$ is in W if and only if $\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$, equivalently

$a = -a, \ c = -b, \ b = -c, \ d = -d, \ \text{ or } \ a = d = 0, \ c = -b.$

Hence, any element of W is of the form

$\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} = b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$

This means that the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ spans W. Recall that a single vector is linearly independent if and only if it is nonzero. The matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, being nonzero, must be linearly independent.

Consequently, the set $\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \}$ is a basis for W and the dimension of W is 1.
Question 3. Let P_3 is the vector space of all polynomials of degree ≤ 3 with real coefficients, that is $P_3 = \{at^3 + bt^2 + ct + d : a, b, c, d \in \mathbb{R}\}$, and let W be the subspace of P_3 spanned by the following the polynomials

\[t^3 + t^2 - 2t + 1, \quad t^2 + 1, \quad t^3 - 2t, \quad 2t^3 + 3t^2 - 4t + 3. \]

(i) Find a basis for W.

(ii) What is dimension of W?

(iii) Is W equal to P_3?

Solution:

\[
\begin{bmatrix}
1 & 0 & 1 & 2 \\
1 & 1 & 0 & 3 \\
-2 & 0 & -2 & -4 \\
1 & 1 & 1 & 3
\end{bmatrix}
- R_1 + R_2
\begin{bmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 1
\end{bmatrix}
- R_2 + R_4
\begin{bmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
= R
\]

As the columns of R containing leading entries are the first and the second columns, the first and the second polynomial form a basis for W. That is, the set

\[\{t^3 + t^2 - 2t + 1, \ t^2 + 1\} \]

is a basis for W. Thus the dimension of W is 2. Moreover, $W \neq P_3$ because their dimensions are not equal.
Question 4. Given the 3×6 matrix $A = \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 \\ 3 & 9 & -5 & -13 & 6 & 3 \\ -2 & -6 & 8 & 18 & -4 & -1 \end{bmatrix}$.

(i) Find the reduced row echelon form R of A.

(ii) Find a basis for the row space of A.

(iii) Find a basis for the column space of A.

(iv) Find a basis for the nullspace of A.

(v) Find $\text{rank}(A)$ and $\text{nullity}(A)$.

Solution: (i): We reduce A as below:

$\begin{align*}
-3R_1 + R_2 & \quad \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & 8 & 0 & 1 \end{bmatrix} \\
2R_1 + R_3 & \quad \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 1 \end{bmatrix} \\
-2R_2 + R_3 & \quad \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
-4R_2 + R_3 & \quad \begin{bmatrix} 1 & 3 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
2R_2 + R_1 & \quad \begin{bmatrix} 1 & 3 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
\end{align*}$

Thus \[R \begin{bmatrix} 1 & 3 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.\]

(ii): The nonzero rows of R form a basis for the row space of A. Hence, the set

\[\{ \begin{bmatrix} 1 & 3 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \} \]

is a basis for the row space of A. So $\text{rank}(A) = 3$.

(iii): Since the columns of R containing leading entries are its 1st, 3rd, and 6th columns, it follows that the 1st, 3rd, and 6th columns of A form a basis for the column space of A. Hence, the set

\[\{ \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \} \]

is a basis for the column space of A. Note that this basis contains 3 elements as we expected because the dimensions of the row and column space are equal, and this common number is said to be the rank of the matrix.

(iv): We must find a basis for the solution space of $A\vec{x} = \vec{0}$. The reduced row echelon form of the augmented matrix of the system $A\vec{x} = \vec{0}$ is

\[\begin{bmatrix} R | \vec{0} \end{bmatrix} = \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & 0 \end{bmatrix} \]

The unknowns x_2, x_4, and x_5 are free. So the solution set of $A\vec{x} = \vec{0}$ is given by

\[x_1 = -3x_2 + x_4 - 2x_5, \quad x_2 = \text{free}, \quad x_3 = -2x_4, \quad x_4 = \text{free}, \quad x_5 = \text{free}, \quad x_6 = 0.\]
Hence, the set
\[
\left\{ \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}
\]
\[x_2=1; x_4=x_5=0 \quad x_4=1; x_2=x_5=0 \quad x_5=1; x_2=x_4=0\]
is a basis for the nullspace of \(A \). Thus \(\text{nullity}(A) = 3 \).

(v): We have already observed that \(\text{rank}(A) = 3 \) and \(\text{nullity}(A) = 3 \).
Question 5. Complete each of the following sentences by using a correct “number”, or by using a correct word which is one of the words “row, column, null, consistent, inconsistent, dependent, independent”.

(1) If P_n is the vector space of all polynomials of degree $\leq n$ with real coefficients, then the dimension of P_5 is 6.

(2) The column space of a 3×5 matrix is a subspace of \mathbb{R}^3.

(3) The column vectors of a 5×7 matrix are linearly dependent.

(4) The largest possible value for the nullity of a nonzero 5×3 matrix is 2.

(5) The **row** vectors of a 8×6 matrix cannot be linearly independent.

(6) Let A be a matrix and \vec{b} be a column vector satisfying $A\vec{b} = \vec{0}$. Then, \vec{b} is in the **null** space of A.

(7) Let A be a square matrix whose determinant is nonzero. Then, the row vectors of A are linearly independent.

(8) Elementary row operations may change the **column** space of a matrix.

(9) Let A be a nonzero 3×3 matrix satisfying $\text{nullity}(A) \geq \text{rank}(A)$. Then, the rank of A is 1.

(10) Let \vec{u} and \vec{v} be two linearly independent vectors of a vector space V. If a vector \vec{w} of V is not in $\text{span}\{\vec{u}, \vec{v}\}$ then the set $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent.

Solution: See above.