
 
 

1) ( 20 pts.) Show all your work 

Let 
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a) Find the reduced row echelon form of A. 
 

Reduced row echelon form of A is 
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b) Find a basis for the row space of A. 
 

{ })1,0,0,0(),0,2,1,0(),0,15,0,1( −=RB  is a basis for the row space. 
 
 
c) Find a basis for the column space of A. 
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CB  is a basis for the column space of A. 

 
 
d) Find a basis for the null space of A. 
 
A is row-equivalent to R then Ax=0 and Rx=0 have the same solution space. 
Using R, 
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3x  is a free variable,  
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      where .Rt ∈ Thus  
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v  spans the null space of A and { }vBN = is a basis for the null space of A. 



 
 
 
 
e) Find the rank and the dimension of the null space of A. 

 
 
                     Rank(A) = 3,  Nullity(A)= 1. 
 

2) (20 pts.) Let W be a subspace of 3R spanned by the vector ( )1,1,1 − . 
a) Find a basis for the orthogonal complement ⊥W of W. Show all your work. 
 
 

( ) ( ) .001,1,1,, =+−⇔=−⋅⇔∈= ⊥ zyxuWzyxu  
 

 Set y=t, z=s then x=s-t where ., Rts ∈ Thus 
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 is a basis for ⊥W . 

 
 
 
b) Find a basis for 3R consisting of vectors in W and ⊥W , only. Explain your 

solution. 
                            
                        The vectors ( ) ( ) ( )0,1,1,1,0,1,1,1,1 −−   form a basis for .3R   ( ) ( )0,1,1,1,0,1 −      
                  are linearly independent by a).Mutually orthogonal vectors are linearly    
                 independent hence  ( ) ( ) ( )0,1,1,1,0,1,1,1,1 −− are linearly independent and 3 linearly    
                independent vectors in 3R form a basis. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 

3) (20 pts.) Show all your work. 

     Let 
→
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v  be two nonzero vectors in nR  such that for every pair of scalars x and y, 
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4) (20 pts.) Show all your work. 
     Let A be an nxn matrix such that 05 =A  and .04 ≠A  

a) Show that there is a nonzero nRv ∈
→

 such that 04 ≠
→

vA . 

             04 ≠A ⇒Null ( 4A ) nR≠ .Hence there exists nRv ∈
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b) Let v be as in part a) .Show that the vectors 
→→→→→

vAvAvAvAv 432 ,,,,  
 are linearly independent. 

 
        Let Rccccc ∈43210 ,,,,  be such that  
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       Since 05 =A 0=⇒ kA  for all .5≥k  
      Multiply the equation (1) by 4A from left we obtain  
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    Multiply the equation (2) by 3A from left we obtain  
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Similarly we get 0432 === ccc  and these 5 vectors are linearly independent.   

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
5)( 20 pts.) Show all your work. 
 

a) Show that two similar square matrices A and B have the same eigenvalues with the 
same multiplicities. 

A and B are similar if there exists an invertible matrix P such that .1 BAPP =−  
 

PIAPPIAPPPAPPPPAPPIB λλλλλ −=−=−=−=− −−−−−− 111111 )(
 

            = IAIAPP λλ −=−−1 . 
Thus A and B have the same characteristic polynomials. Therefore A and B have the 
same eigenvalues with the same multiplicities. 
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Thus a=1,c=1 and d=1. 
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