1) (20 pts.) Show all your work

Let $A=\left[\begin{array}{cccc}1 & 6 & -3 & 4 \\ 1 & 7 & -1 & 7 \\ 1 & 8 & 1 & 10 \\ 1 & 0 & -15 & 0\end{array}\right]$.
a) Find the reduced row echelon form of A.

Reduced row echelon form of A is $R=\left[\begin{array}{cccc}1 & 0 & -15 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
b) Find a basis for the row space of A.
$B_{R}=\{(1,0,-15,0),(0,1,2,0),(0,0,0,1)\}$ is a basis for the row space.
c) Find a basis for the column space of A.
$B_{C}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}6 \\ 7 \\ 8 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ 7 \\ 10 \\ 0\end{array}\right]\right\}$ is a basis for the column space of A.
d) Find a basis for the null space of A.
A is row-equivalent to R then $A x=0$ and $R x=0$ have the same solution space.
Using R,
$x_{1}-15 x_{3}=0$
$x_{2}+2 x_{3}=0$
$x_{4}=0$.
x_{3} is a free variable,
$x_{1}=15 t$
$x_{2}=-2 t$
$x_{3}=t$
$x_{4}=0$
$v=\left[\begin{array}{c}15 \\ -2 \\ 1 \\ 0\end{array}\right]$ spans the null space of A and $B_{N}=\{v\}$ is a basis for the null space of A.
e) Find the rank and the dimension of the null space of A.

$$
\operatorname{Rank}(A)=3, \operatorname{Nullity}(A)=1 .
$$

2) (20 pts.) Let W be a subspace of R^{3} spanned by the vector $(1,-1,1)$.
a) Find a basis for the orthogonal complement W^{\perp} of W. Show all your work.
$u=(x, y, z) \in W^{\perp} \Leftrightarrow u \cdot(1,-1,1)=0 \Leftrightarrow x-y+z=0$.
Set $y=t, z=s$ then $x=s-t$ where $s, t \in R$.Thus

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
s-t \\
t \\
s
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] .
$$

Then $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for W^{\perp}.
b) Find a basis for R^{3} consisting of vectors in W and W^{\perp}, only. Explain your solution.

The vectors $(1,-1,1),(1,0,1),(-1,1,0)$ form a basis for $R^{3} .(1,0,1),(-1,1,0)$ are linearly independent by a).Mutually orthogonal vectors are linearly independent hence $(1,-1,1),(1,0,1),(-1,1,0)$ are linearly independent and 3 linearly independent vectors in R^{3} form a basis.

3) (20 pts.) Show all your work.

Let \vec{u} and \vec{v} be two nonzero vectors in R^{n} such that for every pair of scalars x and y, the vectors $x \vec{u}+y \vec{v}$ and $4 y \vec{u}-9 x \vec{v}$ are orthogonal, and $|\vec{u}|=6$.

Compute

a) $\vec{u} \bullet \vec{v}=$?
$(x \vec{u}+y \vec{v}) \bullet(4 y \vec{u}-9 x \vec{v})=0$ for all x and y in R.
$4 x y|\vec{u}|^{2}+\left(4 y^{2}-9 x^{2}\right) \vec{u} \bullet \vec{v}-9 x y|\vec{v}|^{2}=0$ for all x and y in R.
Choose $x=0, y=1$. Then $\vec{u} \bullet \vec{v}=0$.
b) $|\vec{v}|=$?

Taking $x=y=1$,

$$
4|\vec{u}|^{2}-9|\vec{v}|^{2}=0 \text {. Put }|\vec{u}|=6 \text {. Then }|\vec{v}|^{2}=16 \Rightarrow|\vec{v}|=4 \text {. }
$$

c) $|2 \vec{u}+3 \vec{v}|=$?
$|2 \vec{u}+3 \vec{v}|^{2}=\left.4 \vec{u}\right|^{2}+9|\vec{v}|^{2}+12 \vec{u} \bullet \vec{v}=4 \cdot 36+9 \cdot 16=288$
and $|2 \vec{u}+3 \vec{v}|=\sqrt{288}=12 \sqrt{2}$.

4) (20 pts.) Show all your work.

Let A be an $n x n$ matrix such that $A^{5}=0$ and $A^{4} \neq 0$.
a) Show that there is a nonzero $\vec{v} \in R^{n}$ such that $A^{4} \vec{v} \neq 0$.
$A^{4} \neq 0 \Rightarrow \operatorname{Null}\left(A^{4}\right) \neq R^{n}$.Hence there exists $\vec{v} \in R^{n}$ such that $\vec{v} \notin \operatorname{Null}\left(A^{4}\right)$ i.e. $A^{4} \vec{v} \neq 0$.

Or

$$
A^{4} \vec{v} \neq 0 \Rightarrow 0 \neq A^{4}=A^{4} I=\left[\begin{array}{lllll}
A^{4} e_{1} & A^{4} e_{2} & A^{4} e_{3} & \cdots & A^{4} e_{n}
\end{array}\right]
$$

i.e. $A^{4} e_{1} \neq 0$ or $A^{4} e_{2} \neq 0$ or $A^{4} e_{3} \neq 0$ or $\ldots . A^{4} e_{n} \neq 0$.
b) Let v be as in part a). Show that the vectors $\vec{v}, A \vec{v}, A^{2} \vec{v}, A^{3} \vec{v}, A^{4} \vec{v}$ are linearly independent.

Let $c_{0}, c_{1}, c_{2}, c_{3}, c_{4} \in R$ be such that
(1) $c_{0} \vec{v}+c_{1} A \vec{v}+c_{2} A^{2} \vec{v}+c_{3} A^{3} \vec{v}+c_{4} A^{4} \vec{v}=0$.

Since $A^{5}=0 \Rightarrow A^{k}=0$ for all $k \geq 5$.
Multiply the equation (1) by A^{4} from left we obtain

$$
c_{0} A^{4} \vec{v}=0 \Rightarrow c_{0}=0 \text {. Then }
$$

(2) $c_{1} A \vec{v}+c_{2} A^{2} \vec{v}+c_{3} A^{3} \vec{v}+c_{4} A^{4} \vec{v}=0$.

Multiply the equation (2) by A^{3} from left we obtain

$$
c_{1} A^{4} \vec{v}=0 \Rightarrow c_{1}=0
$$

Similarly we get $c_{2}=c_{3}=c_{4}=0$ and these 5 vectors are linearly independent.

5)(20 pts.) Show all your work.

a) Show that two similar square matrices A and B have the same eigenvalues with the same multiplicities.
A and B are similar if there exists an invertible matrix P such that $P^{-1} A P=B$.

$$
\begin{aligned}
|B-\lambda I| & =\left|P^{-1} A P-\lambda P^{-1} P\right|=\left|P^{-1} A P-P^{-1} \lambda P\right|=\left|P^{-1}(A-\lambda I) P\right|=\left|P^{-1}\right| A-\lambda I| | P \mid \\
& =|P|^{-1}|P \| A-\lambda I|=|A-\lambda I| .
\end{aligned}
$$

Thus A and B have the same characteristic polynomials. Therefore A and B have the same eigenvalues with the same multiplicities.
b) Given the matrix $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 5 & -1 & -5 \\ -1 & 0 & 2\end{array}\right]$, calculate real numbers a, c, d such that $P^{-1} A P=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & c & d \\ 0 & -d & c\end{array}\right]$ for some invertible matrix P.

Let $B=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & c & d \\ 0 & -d & c\end{array}\right]$. Then by a), A and B have the same characteristic polynomials.
$|A-\lambda I|=\left|\begin{array}{ccc}2-\lambda & -1 & -1 \\ 5 & -1-\lambda & -5 \\ -1 & 0 & 2-\lambda\end{array}\right|=(-1)\left|\begin{array}{cc}-1 & -1 \\ -1-5 \lambda & -5\end{array}\right|+(2-\lambda)\left|\begin{array}{cc}2-\lambda & -1 \\ 5 & -1-\lambda\end{array}\right|$
$=-(\lambda-1)\left(\lambda^{2}-2 \lambda+2\right)=0 \Rightarrow \lambda_{1}=1, \lambda_{2}=1+i, \lambda_{3}=1-i$.
$|B-\lambda I|=\left|\begin{array}{ccc}a-\lambda & 0 & 0 \\ 0 & c-\lambda & d \\ 0 & -d & c-\lambda\end{array}\right|=(a-\lambda)\left((c-\lambda)^{2}+d^{2}\right)=0 \Rightarrow \lambda_{1}=a, \lambda_{2,3}=c \pm i d$.
Thus $a=1, c=1$ and $d=1$.

SURNAME NAME: SIGNATURE:

THIS IS AN EXTRA PAGE FOR CALCULATIONS.DO NOT SEPARATE.

