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Abstract

In this paper we study finite group extensions represented by special cohomology classes. As

an application we obtain some restrictions on finite groups which can act freely on a product

of spheres or on a product of real projective spaces. In particular, we prove that if (Z/p)r acts

freely on (S1)k, then r ≤ k.

1 Introduction

Let G be a finite group. An extension of G by an abelian group M ,

0 →M → Γ → G→ 1

is called special if its restrictions to cyclic subgroups of G do not split. Extensions of this kind

arise naturally in many contexts including group theory, classification of flat manifolds [13], and

group actions on special manifolds [3]. In this paper we establish inequalities for such extensions,

and then look at the free group actions on the k-torus and products of real projective spaces.

In both of these cases short exact homotopy sequences for corresponding coverings are special

extensions. As an application we solve special cases of some well known problems.

We first consider extensions withM = Zk, a free abelian group of rank k. In this case a group

extension 0 → Zk → Γ → G → 1 is special if and only if Γ is torsion free. Our main result is

the following :

Theorem 3.2 Let G be a finite group, and let 0 → Zk → Γ → G → 1 be an extension of G.

If Γ is torsion free, then rp(G) ≤ k for all p | |G|.

Here rp(G) denotes the p-rank of G, the largest integer r such that (Z/p)r ⊆ G. As an application,

we have

Corollary 5.2 If G= (Z/2)r acts freely on X ≃ (S1)k, then r ≤ k.

The existence of this inequality for free (Z/p)r actions on (Sn)k was stated as a problem by

P.E. Conner after P.A. Smith’s results on finite group actions on spheres. Under the assumption
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of trivial action on homology, this problem was solved by G. Carlsson [7], [8]. Later W. Browder

[5] by using exponents, and Benson and Carlson [4] by using machinery of varieties for modules,

gave alternative proofs of this result. The homologically nontrivial case involved some module

theoretical difficulties overcome by Adem and Browder in [2]. They obtained the inequality r ≤ k

except in the cases p = 2 and n = 1, 3, or 7. Corollary 5.2 solves p = 2 and n = 1 case, leaving

the other two cases open.

Adem and Browder also questioned whether or not the stronger inequality

r ≤ dimFp
Hn(X,Fp)

G

holds [2]. Later Adem and Benson established this inequality for permutation modules [1]. In

section 5, we give a different proof of this result for n = 1.

We then look at the central extensions 0 → M → Γ → G→ 1 where G is a finite group, M

is a free abelian group, and G acts on M trivially. We show that if such an extension is special,

then G must be abelian. As a topological application, we conclude that nonabelian groups can

not act freely on the k-torus (S1)k with a trivial action on homology.

Next, we consider the central extensions

0 → E → Q→ G→ 1 (1)

where both E and G are elementary abelian 2-groups of rank k and r respectively. Observe that

these extensions are special if and only if r2(Q) = k. In this case every element of order 2 in Q is

central which is known as the 2C condition for Q. For special central extensions as (1), Cusick

showed that the inequality r ≤ 2k must hold [9]. We first prove a refinement of this result which

gives a stronger inequality

r ≤ k + rkQ′

where Q′ is the commutator subgroup of Q. Then in Section 7 we obtain

rkQ′ = dimFp
(im d3)

where d3 : H
2(E,Z) → H3(G,Z) is a differential on the Hochschild-Serre spectral sequence

H∗(G,H∗(E,Z)) ⇒ H∗(Q,Z) for (1). Applying these to the group extensions associated to the

group actions on products of real projective spaces, we obtain the following :

Theorem 8.3 If G= (Z/2)r acts freely and mod 2 homologically trivially on a finite complex

X ≃
k
∏

i=1
RP 2mi+1 where mi > 0 for all i, then r ≤ µ(m1) + · · ·+ µ(mk), where µ(mi) = 1 for mi

even and µ(mi) = 2 for mi odd.

This solves a special case of a conjecture on elementary abelian 2-group actions on products

of projective spaces, stated by L.W. Cusick [9].

Now, we fix some notation. Throughout this paper Z(G) will denote the center of the group

G, and G′ will be the commutator subgroup of G. Also, for a prime number p, Z/p will be the

integers mod p, while Fp will denote the field of p elements.
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The results in this paper form part of a doctoral dissertation, written at the University of

Wisconsin. I am indebted to my thesis advisor Alejandro Adem for his guidance and constant

support. I also would like to thank Nobuaki Yagita for pointing out a mistake in an earlier

version of this paper.

2 Rational representations of (Z/2)r

Let G be an elementary abelian 2-group of rank r. If π : G →→ Z/2 is a surjection, then the

composition G →→ Z/2 → Q(−1)∗ determines an irreducible QG-module which will be denoted

byM(π). In fact all nontrivial irreducible representations arise in this way (see [2]) and therefore,

any QG-module M can be expressed uniquely as

M ∼= Qm ⊕

(

t
⊕

i=1

M(πi)

)

.

For a ZG-module L, let QL denote the corresponding rational representation Q⊗Z L.

Lemma 2.1 Let L be a Z free ZG-module such that QL is a simple QG-module. Then, for

every α ∈ H2(G,L) there is an index 2 subgroup H ⊆ G such that resGH α = 0.

proof. We first show that when QL is an irreducible module, H2(G,L) has exponent 2. This

is clear when QL ∼= Q because then, L ∼= Z and H2(G,Z) ∼= (Z/2)r. When QL is nontrivial,

by the above classification, it is isomorphic to M(π) for some π : G →→ Z/2. Let K = ker π

and let C be a cyclic subgroup of G such that G ∼= K × C. The exact sequence C → G → K

gives a Lyndon-Hochschild-Serre spectral sequence H∗(K,H∗(C,L)) ⇒ H∗(G,L) where even

dimensional horizontal lines vanish because LC = 0. Since L is one dimensional and C acts on

L by multiplication by (−1), H1(C,L) ∼= L/2L ∼= Z/2, which gives that H2(G,L) ∼= H1(K,F2)

has exponent 2.

Now, consider the following long exact sequence

→ H1(G,L/2L)−→H2(G,L)
×2
−→H2(G,L)−→H2(G,L/2L) →

which comes from the coefficient sequence 0 → L
×2
−→L−→L/2L → 0. Since multiplication

by 2 is zero on H2(G,L), there is a class α′ ∈ H1(G,L/2L) which maps to α. But, by above

L/2L ∼= F2, and hence H1(G,L/2L) ∼= Hom(G,F2). Let H ⊆ G be the kernel of the map that

corresponds to α′. Then resGH α′ = 0, and hence resGH α = 0. 2

By using an induction on simple summands of QM we get

Lemma 2.2 Let M be a Z free ZG-module with rkM < r. Then, for any α ∈ H2(G,M) there

exists a nontrivial subgroup H ⊆ G such that rkH = (r − rkM) and resGH α = 0.

proof. (By induction on rkM)
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When QM is irreducible, this lemma follows from Lemma 2.1. Assume QM is not irreducible,

then QM ∼= S ⊕ U for some nonzero QG-modules S and U . Let q be the projection map from

QM to U . Set N = q(M) and L = ker q ∩M . Then we have a short exact sequence of ZG

lattices

0 → L
i

−→M
q

−→N → 0

where QL ∼= S and QN ∼= U . Consider the corresponding long exact sequence for cohomology

→ H2(G,L)
i∗

−→H2(G,M)
q∗
−→H2(G,N) → .

Let α be any element in H2(G,M). Then q∗(α) ∈ H2(G,N) and by induction there is a subgroup

K in G such that rkK = r − rkN and resGK q∗(α) is zero. From the commutative diagram

H2(G,M) H2(G,N)

H2(K,L) H2(K,M) H2(K,N)

-q
∗

?

resG
K

?

resG
K

-i
∗

-q
∗

we get q∗(resGK α) = 0. Hence there exists an element in H2(K,L), say α′, which maps to

resGK α. By induction again there is a subgroup H ⊆ K such that rk H = rk K − rk L and

resKH α′ is zero. Then

resGH α = resKH resGK α = resKH i∗(α′) = i∗(resKH α′) = 0

and

rkH = r − rkN − rk L = r − rkM.

So, H is a subgroup as desired. 2

3 The main theorem

First, we prove the following :

Lemma 3.1 Let G= (Z/p)r, and let M be a Z free ZG-module. If 0 → M → Γ → G → 1 is

an extension such that Γ is torsion free, then

rkH ≤ dimFp
(Fp ⊗M)G

where H ⊆ G is the subgroup of elements in G acting trivially on M .

proof. Let us fix a set of representatives in Γ for elements of G, and let us denote the repre-

sentative of an element g ∈ G by ĝ. Let ψ : H → M/pM be the pth power map in mod p, i.e.

ψ(h) = ( ĥ )p (mod p). We will show that ψ is an injection into (M/pM)G which will imply the

desired inequality.
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First observe that for h, k ∈ H , [ĥ, (k̂)p] = 0 because (k̂)p is in M and h acts on M trivially.

Then note that

0 = [ĥ, (k̂)p] = [ĥ, k̂] + [ĥ, k̂]k̂ + · · ·+ [ĥ, k̂](k̂)
p−1

= p [ĥ, k̂].

Hence [ĥ, k̂] = 0, because [ĥ, k̂] is in M and M is Z-free. From this it follows that ψ is a

homomorphism, and the injectivity follows from the fact that Γ is torsion free.

Finally, we compute (g − 1)ψ(h) as

[ĝ, (ĥ)p] = [ĝ, ĥ] + [ĝ, ĥ]ĥ + · · ·+ [ĝ, ĥ](ĥ)
p−1

= p [ĝ, ĥ] ≡ 0 (mod p).

Hence the image of ψ is in (M/pM)G. This completes the proof. 2

Now, we state our main result.

Theorem 3.2 Let G be a finite group, and let 0 → Zk → Γ → G→ 1 be an extension of G. If

Γ is torsion free, then rp(G) ≤ k for all p | |G|.

proof. Observe that it is enough to prove the theorem for G= (Z/p)r. Let M = Zk, and let

α ∈ H2(G,M) be the extension class for 0 → M → Γ → G→ 1 as explained in Chapter IV of

[6]. We use different arguments for p = 2 and p > 2 cases.

p = 2 case : Assume r > k, then by Lemma 2.2 there exists a nontrivial subgroup H ⊆ G

such that resGH α = 0 which implies that π−1(H) → H splits, where π : Γ → G. Thus there is a

subgroup K ⊆ π−1(H) ⊆ Γ that is isomorphic to H . Since H is a torsion group, Γ can not be

torsion free.

p > 2 case : Let H ⊆ G be the subgroup of elements that act trivially on M = Zk. Then, by

Lemma 3.1,

rkH ≤ dimFp
(Fp ⊗M)G (2).

On the other hand, G/H acts faithfully on M , and for faithful modules we have

Theorem 3.3 (Adem and Browder [2] ) Let K be an elementary abelian p-group with p > 2

and M be a Z free ZK-module. If M is a faithful representation, then

rkK ≤
1

p− 2

(

dimFp
Fp ⊗M − dimFp

(Fp ⊗M)K
)

.

This immediately gives an equality for G/H which, together with (2), implies that

r ≤ dimFp
(Fp ⊗M)G +

1

p− 2

(

dimFp
Fp ⊗M − dimFp

(Fp ⊗M)G
)

≤ k. 2

4 Permutation module case

In this section we show that the result of the previous section can be strengthened in the case of

a permutation module. We start with a definition.
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Definition 4.1 Let G be a finite group, and let M be ZG-module. A class α ∈ Hn(G,M) is

called special if it has nonzero restrictions to every cyclic subgroup of G.

So, an extension 0 → M → Γ → G → 1 is special if and only if the corresponding class in

H2(G,M) is a special class.

Lemma 4.2 If α ∈ H2(G,M) is a special class, then its image under mod p reduction map

H2(G,M) → H2(G,Fp ⊗M) is also special.

proof. Let α ∈ H2(G,M) be the class representing the extension 0 → M → Γ → G → 1. For

a cyclic subgroup C ⊆ G, consider the following commutative diagram

H2(G,M) H2(G,Fp ⊗M)

H2(C,M) H2(C,M) H2(C,Fp ⊗M)

-qG

?
resG

C

?
resG

C

-×p -qC

where the rows come from the coefficient sequence 0 → M
×p
−→M → Fp ⊗M → 0. Since

multiplication by |C| on H2(C,M) is zero, the map qC is injective. Hence, the fact that resGC α 6=

0 implies that

resGC qG(α) = qC(res
G
C α) 6= 0.

Since this is true for all cyclic subgroups C ⊆ G, qG(α) is special. 2

Proposition 4.3 Let 0 → M → Γ → G → 1 be a special extension, where G= (Z/p)r and

M = Zk. Suppose Fp ⊗M is a permutation FpG-module. Then

rkG ≤ dimFp
(Fp ⊗M)G.

proof. Let 0 → M → Γ → G → 1 be a special extension represented by the class α′ ∈

H2(G,M). Let α be its image under mod p reduction map H2(G,M) → H2(G,Fp ⊗M). By

the above lemma, α is also special. Now, if Fp ⊗M is a permutation module, then it is of the

form Fp ⊗M =
l
⊕

i=1
Fp[G/Hi] for some collection of subgroups Hi ⊆ G. Let πi :G→ Hi, 1 ≤ i ≤ l

be a set of fixed projections. For each i, consider the composition

φi : H
2(G,Fp[G/Hi])

ψi−→H2(Hi,Fp)
π∗

i−→H2(G,Fp)

where the first map is the isomorphism in “Shapiro’s lemma” (see page 73 of [5]) and the second

map induces from πi : G→ Hi.

Let θ = (φ1(α1), . . . , φl(αl)). We claim that θ ∈ H2(G,
l
⊕

i=1
Fp) is a special class. To prove

the claim, it is enough to show that for every cyclic subgroup C ⊆ G, there is an i such that

resGC φi(αi) 6= 0. Take a cyclic subgroup C ⊆ G. Since α is special, resGC αi 6= 0 for some i. If
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C 6⊆ Hi, then res
G
C Fp[G/Hi] is a free FpC module, hence resGC {H2(G,Fp[G/Hi])} = 0. So, C

must be a subgroup of Hi. We can write the map ψi as the composition

ψi : H
2(G,Fp[G/Hi])

resG
Hi−→ H2(Hi, res

G
Hi

Fp[G/Hi]) = H2(Hi,
⊕

g∈G/Hi

gFp)−→H2(Hi,Fp)

where the second map is the projection
⊕

g∈G/Hi

gFp → g0Fp ∼= Fp where g0 is the coset representa-

tive for the identity element of G/Hi. Observe that G acts on the middle term by permuting the

summands, and the image of resGHi
is invariant under this action. This implies that resGK ψ(u) = 0

if and only if resGK u = 0 for every subgroup K ⊆ Hi and every element u ∈ H2(G,Fp[G/Hi]).

So, resGC ψ(αi) must be nonzero. Since πi reduces to the identity homomorphism on subgroups

of Hi, π
∗

i reduced to C is injective. Hence

resGC φ(αi) = π∗

i |C ◦ resGC ψi(αi) 6= 0.

So, θ is a special class.

Now, we will show that θ is an integral class, i.e. an image of a class in H2(G,Zl). For this, it

is enough to show that its image under Bockstein homomorphism β is zero. Since β(α) = 0, β(θ)

will be zero if φi commutes with β. This is clear since all the maps involved in the composition

commute with β.

Let θ̄ ∈ H2(G,Zl) be a preimage of θ under mod p reduction map. Since θ is special, θ̄ must

be special also. Hence, it represents an extension 0 → Zl → Γ′ → G → 1 with Γ′ torsion free.

Applying Theorem 3.2, we conclude that r ≤ l = dimFp
(Fp ⊗M)G. 2

5 Group actions on a torus

In this section we link the results of the previous sections to group actions. Let X be a finite

dimensional manifold or a finite dimensional CW complex homotopy equivalent to (S1)k for some

k, which we abbreviate as X ≃ (S1)k. Let G be an arbitrary finite group which acts freely on X .

We will assume that the action is a smooth action on a manifold or a cellular action on a CW

complex. This assumption guarantees that the orbit space X/G is also finite-dimensional. This

is one of the main topological inputs we have.

Since the orbit map q : X → X/G is a regular covering map, we get a short exact sequence of

groups

0 → π1(X, xo) → π1(X/G, x̄o) → G→ 1.

Note that there is a G action on π1(X, xo), coming from the topological action on X . Such an

action exists because π1(X, xo) is abelian. We will consider π1(X, xo) as a ZG-module with this

action, and will denote it by M . Since the action induced from topological action coincides with

the conjugation action in π1(X/G, x̄o), the above extension is an extension for the ZG-module

M . Let Γ = π1(X/G, x̄o). We have the following :

Lemma 5.1 Γ is Torsion free.
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proof. Since πi(X/G, x̄o) = πi(X, xo) = 0 for i > 1, X/G is a classifying space for Γ. Note

that X/G is finite dimensional because X is finite dimensional. Hence H∗(Γ,Z) = H∗(X/G,Z)

is finite dimensional. Now, assume that Γ is not torsion free. Then Z/n →֒ Γ for some n, and

we can consider H∗(Z/n,Z) as a H∗(Γ,Z) module through the restriction map. By a result of

L. Evens [10],H∗(Z/n,Z) is finitely generated overH∗(Γ,Z). SinceH∗(Γ,Z) is finite dimensional,

this will imply that H∗(Z/n,Z) is finite dimensional. This contradicts the known computation

H2i(Z/n,Z) = Z/n for all i > 0. 2

Combining this with the results of previous sections we obtain :

Corollary 5.2 If G= (Z/2)r acts freely on X ≃ (S1)k, then r ≤ k.

proof. This follows immediately from Lemma 5.1 and Theorem 3.2. 2

We also recover the n = 1 case of Adem and Benson’s theorem [2].

Corollary 5.3 (Adem and Benson) If G= (Z/p)r acts freely on X ≃ (S1)k, permuting a ba-

sis for H1(X,Fp), then

r ≤ dimFp
H1(X,Fp)

G.

proof. This immediately follows from Lemma 5.1 and Proposition 4.3.

Now, we consider the case where G is an arbitrary finite group and the action on homology

is trivial. We prove the following :

Theorem 5.4 If a finite group G acts freely on X ≃ (S1)k with trivial action on homology, then

G is abelian.

proof. Let M and Γ be as above. Since the action on homology is trivial, we have M =MG ⊆

Z(Γ). Hence

|Γ/Z(Γ)| ≤ |Γ/M | = |G| <∞.

Now, we quote a result from group theory :

Lemma 5.5 (Schur) If Γ is a group with Γ/Z(Γ) finite, then Γ′ is also finite.

proof. See page 114 in [14]. 2

From this, it follows that Γ′ is finite. However, by Lemma 5.1, Γ is torsion free. Hence, Γ′ has

to be the trivial, i.e. Γ is abelian. Therefore G is abelian. 2

Recently it was brought to my attention that Theorem 5.4 can be obtained as a special case

of a result in [11].
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6 Extensions by elementary abelian p-groups

Throughout this section we will consider central extensions of the form

0 → E → Q→ G→ 1 (3)

where E = (Z/p)k and G= (Z/p)r.

Observe that extension (3) is special if and only if E is a maximal elementary abelian subgroup

of Q. In this case Q would satisfy the pC condition, i.e. every element of order p will be central.

Lemma 6.1 Suppose extension (3) is special, then

r ≤

{

2k if p = 2,

k if p > 2.

proof. This lemma was proved for p = 2 by Cusick [9] and for p > 2 by Allday [3]. For

completeness, we include the proof of the p = 2 case. Let α ∈ H2(G,E) be the extension class

for (3). Since E = (Z/2)k is a trivial G-module, H2(G,E) ∼=
k
⊕

i=1
H2(G,Z/2). Hence one can write

α = (α1, . . . , αk) where αi ∈ H2(G,Z/2). Since H∗(G,Z/2) ∼= Z/2 [x1, . . . , xr] with deg xi = 1,

we can consider αi’s as quadratic polynomials in variables x1, . . . , xr. By a well known argument

of Carlsson, α being special implies that α1, . . . , αk do not have a common zero [7]. Hence r ≤ 2k

follows from the following proposition. 2

Proposition 6.2 (Lang-Nagata) If f1, . . . , fk are homogeneous polynomials in r variables of

degree n with coefficients in Z/2, and if r > nk, then they have a nontrivial common zero in

(Z/2)r.

proof. See page 18 of [12]. 2

Now, we will prove a refinement of Lemma 6.1 for p = 2.

Proposition 6.3 Let 0 → E → Q → G → 1 be a special central extension with E = (Z/2)k,

G= (Z/2)r. Then r ≤ k + rkQ′.

proof. Consider the following diagram where all the boxes commute.

Q′ Q′

E Q G

E/Q′ Q/Q′ G

-=

? ?
-

?

-

? ?
=

- -π
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Let ψ : G → E/Q′ be the 2nd power map defined as ψ(g) = (ĝ)2 where ĝ ∈ Q/Q′ is the coset

representative for g ∈ G. Since Q/Q′ is abelian, φ is a homomorphism. Let K = ker ψ. Then

we have

rk (G/K) ≤ rk (E/Q′) (4).

Now, consider

H2(G,E) H2(G,E/Q′)

H2(K,Q′) H2(K,E) H2(K,E/Q′)

-q
∗

?

resG
K

?

resG
K

-i∗ -q
∗

where rows of the diagram come from the short exact sequence

0 → Q′ −→E
q

−→E/Q′ → 1.

If α ∈ H2(G,E) is the extension class for 0 → E → Q → G → 1, then resGK q∗(α) represents

the extension 0 → E/Q′ → π−1(K) → K → 1. Since ψ(k) = (k̂)2 = 1 for each k ∈ K, this

extension splits, hence resGK q∗(α) = 0.

From the commutativity of the above cohomology diagram, we get q∗(resGK α) = 0 . Hence

there exists an element α′ ∈ H2(K,Q′) such that i∗(α′) = resGK α. Now, α′ must be special,

because otherwise there exists a cyclic subgroup C of K such that resKC α′ = 0, giving

resGC α = resKC resGK α = resKC i∗(α′) = i∗(resKC α′) = 0

which is a contradiction to the speciality of α.

Finally we apply Lemma 6.1 to the extension represented by α′ and we get

rkK ≤ 2 rkQ′

which, together with (4), gives the desired inequality. 2

We conclude the section with an application to group theory. Let r2(G) denote the 2-rank of

a group G, the largest integer r such that G has a subgroup isomorphic to (Z/p)r.

Corollary 6.4 Let G be a 2-group satisfying the 2C condition and let E ⊆ G be the elementary

abelian subgroup of maximum rank. Then

r2 (G/E) ≤ r2 (G) + r2 (G
′).
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7 Commutator subgroup of a class 2 group

Let G be a finite, class 2 group, i.e. G has a central subgroup H with an abelian quotient.

Consider the following diagram

H2(G) H2(G/H) H1(H) H1(G) H1(G/H) 0

0 H G G/H 0

- -d
2

-i∗ - -

- -

6=

-

6q

-

6=

where the first row is the homology 5-term exact sequence of the Hochschild-Serre spectral

sequence in Z coefficients. Note also that the boxes in the diagram are commutative where the

horizontal map q is the abelianization map. From this we get

im d2 = ker i∗ = (ker q) ∩H = G′ ∩H = G′.

Now, consider the cohomology 5-term exact sequence for the same extension

0 → H2(G/H) → H2(G) → H2(H)
d3−→H3(G/H) → H3(G)

which gives a short exact sequence of finite groups

0 → H2(G/H) → H2(G) → ker d3 → 0. (5)

We have the following duality :

Lemma 7.1 Ext (ker d3,Z) ∼= H/im d2.

proof. Consider the diagram

0 → Ext (ker d3,Z) Ext (H2(G),Z) Ext (H2(G/H),Z) → 0

0 → H1(H)/im d2 H1(G) H1(G/H) → 0

- -

? ?
- -

where the first row comes from the short exact sequence (5), and the second row comes

from the 5-term exact sequence for homology. Since G is a finite group, both vertical maps are

isomorphisms by the Universal Coefficient Theorem. Hence, the induced map

Ext (ker d3,Z)−→H/im d2

is an isomorphism. 2

Proposition 7.2 Let G be a finite, class 2 group. Let H ⊆ G be a central subgroup such that

G/H is abelian. Then

G′ ∼= im { d3 : H
2(H) → H3(G/H) }.
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proof. We have H/G′ = H/im d2 ∼= Ext (ker d3,Z) ∼= ker d3 because ker d3 is a finite abelian

group. Hence G′ ∼= H/ker d3 ∼= im d3. 2

As a consequence one immediately gets that if G/H = (Z/p)r, then |G′| ≤ p
r(r−1)

2 . In the next

section we give a topological application.

8 Actions on products of real projective spaces

Let X be a finite CW complex, homotopy equivalent to a product of odd dimensional real

projective spaces, which we abbreviate as X ≃
k
∏

i=1
RP 2mi+1.

Lemma 8.1 Let G= (Z/2)r, and let X ≃
k
∏

i=1
RP 2mi+1 (mi > 0 for all i) be a free G-space with

a trivial action on mod 2 cohomology. If n is the number of odd mi’s, then

rk π1(X/G, x̄o)
′ ≤ n.

proof. Consider the Cartan-Leray spectral sequence

H∗(G,H∗(X,Z)) ⇒ H∗(X/G,Z)

associated to the regular covering map X → X/G. Let {x1, . . . , xk} be a generating set for

H2(X,Z) = H2(
k
∏

i=1
RP 2mi+1,Z) where xi corresponds to RP 2mi+1 . If mi = 2l for some l, then

by using the derivation property of the differentials, we get

0 = d3(x
2l+1
i ) = x2li ⊗ d3(xi)

which gives that d3(xi) = 0 . Hence, dimFp
(ker d3) is greater or equal to the number of even

mi’s, i.e. dimFp
(ker d3) ≥ k − n.

Now, note that d3 in the above C-L spectral sequence is the same as d3 of the H-S spectral

sequence for

0 → π1(X, xo) → π1(X/G, x̄o) → G→ 1

and for the latter d3, we have

rk π1(X/G, x̄o)
′ = k − dimFp

(ker d3)

from Proposition 7.2. Combining this with the above inequality gives the desired inequality. 2

Lemma 8.2 Let G= (Z/2)r and let X be a finite CW complex such that π1(X, xo) is abelian

and H∗(X,F2) is generated by one-dimensional generators. If G acts freely on X with a trivial

action on homology, then the homotopy sequence

0 → π1(X, xo) → π1(X/G, x̄o) → G→ 1

is a special extension.

12



proof. Let α be the extension class for this extension. Then for a cyclic subgroup C ⊆ G,

resGC α will be the extension class for the homotopy sequence

0 → π1(X, xo)−→π1(X/C, x̄0)
q

−→C → 1

associated to the reduced C action on X .

Assume that resGC α = 0 for some C ⊆ G, i.e. q : π1(X/C, x̄0) → C splits. Let s be a splitting

map for q, then the composition

H1(C,Z) = C
s

−→π1(X/C, x̄0)
ab
−→H1(X/C,Z)

gives a splitting for homology. Hence

H1(X/C,F2) ∼= H1(X,F2)⊕H1(C,F2)

whose dual gives that i∗ : H1(X/C,F2) → H1(X,F2) is a surjection.

Now, consider the Cartan-Leray spectral sequence

Hp(C,Hq(X,F2)) ⇒ Hp+q(X/C,F2)

associated to the covering X → X/C. Let

d p,q2 : Hp(C,Hq(X,F2)) → Hp+2(C,Hq−1(X,F2)

denote the differentials in E2. Note that for (p, q) = (0, 1), we have ker d 0,1
2 = im i∗. So, the

surjectivity of i∗ gives that d 0,1
2 is the identically zero. Then, d p,q2 = 0 for all p, q ≥ 0 because

H∗(X,F2) is generated by H1(X,F2). Since higher differentials d 0,1
r are also zero, the spectral

sequence collapses, i.e.

H∗(X/C,F2) ∼= H∗(X,F2)⊗H∗(C,F2).

This gives that H∗(X/C,F2) is infinite dimensional. On the otherhand, X/C is a finite CW

complex, hence H∗(X/C,F2) must be finite dimensional. We reached to a contradiction, hence

the proof is complete. 2

Now, we state the main result of this section.

Theorem 8.3 If G= (Z/2)r acts freely and mod 2 homologically trivially on a finite complex

X ≃
k
∏

i=1
RP 2mi+1 where mi > 0 for all i, then r ≤ µ(m1) + · · ·+ µ(mk), where µ(mi) = 1 for mi

even and µ(mi) = 2 for mi odd.

proof. By Lemma 8.2, central extension

0 → π1(X, xo) → π1(X/G, x̄o) → G→ 1

is a special extension. Applying Proposition 6.3, we obtain that r ≤ k+π1(X/G, x̄o)
′. Combining

this with the inequality in Lemma 8.1, we obtain the desired inequality. 2

We conclude the paper with an application of Lemma 8.2, suggested by A. Adem.

13



Corollary 8.4 Suppose that G= (Z/2)r acts freely on X = Sn1 × . . .× Snk , and suppose further

that for some subgroup H ⊆ G of rank k, H∗(X/H,F2) is generated by one dimensional classes.

Then r = k.
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