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Abstract. Let G be a finite group and k an algebraically closed field of characteristic
p > 0. We define the notion of a Dade kG-module as a generalization of endo-permutation
modules for p-groups. We show that under a suitable equivalence relation, the set of
equivalence classes of Dade kG-modules forms a group under tensor product, and the
group obtained this way is isomorphic to the Dade group D(G) defined by Lassueur. We
also consider the subgroup DΩ(G) of D(G) generated by relative syzygies ΩX , where
X is a finite G-set. If C(G, p) denotes the group of superclass functions defined on the
p-subgroups of G, there are natural generators ωX of C(G, p), and we prove the existence
of a well-defined group homomorphism ΨG : C(G, p) → DΩ(G) that sends ωX to ΩX .
The main theorem of the paper is the verification that the subgroup of C(G, p) consisting
of the dimension functions of k-orientable real representations of G lies in the kernel of
ΨG.

1. Introduction

Let G be a finite group with Sylow p-subgroup S, and let k be an algebraically closed
field of characteristic p > 0. Throughout we assume that all kG-modules are finitely
generated. A kG-module M is a permutation module if it has a G-invariant basis. A kG-
module M is called an endo-permutation module if End(M) ∼= M∗ ⊗M is a permutation
kG-module. Endo-permutation modules play an important role in representation theory,
for example, they appear as sources of simple modules.

When G = S is a p-group, every permutation kS-module k[S/Q] formed by linearizing
a transitive S-set is indecomposable. Hence a summand of a permutation module is also a
permutation module. This together with other properties make it possible to define a group
of endo-permutation modules. An endo-permutation module is said to be capped if it has a
summand with vertex S. Two endo-permutation modules M and N are called compatible if
M ⊕N is also an endo-permutation module. Compatibility defines an equivalence relation
on endo-permutation modules. The Dade group D(S) of a p-group S is defined to be the
group whose elements are the equivalence classes of capped endo-permutation kS-modules
and whose group operation is induced by tensor product, i.e., [M ] + [N ] := [M ⊗N ]. The
Dade group of a p-group has been studied by many authors; a complete description in
terms of the genetic sections of the group is given by Bouc in [7] (see also [16], [14], [15],
and [10]).

When G is a finite group, the situation is more complicated since transitive permutation
kG-modules need not be indecomposable. For finite groups it makes sense to extend the
definition of endo-permutation kG-modules in the following way: A kG-module M is a
p-permutation module if it is a summand of a permutation kG-module. This is equivalent
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to requiring that ResGS M be a permutation kS-module. A kG-module M is called an
endo-p-permutation module if End(M) ∼= M∗ ⊗M is a p-permutation module.

In [28], Urfer showed that the source of an indecomposable endo-p-permutation module
M with vertex S is a capped endo-permutation kS-module and its equivalence class in
D(S) is G-stable (see [28, Theorem 1.5]). Two endo-p-permutation modules are declared
equivalent if their corresponding source modules represent the same class in D(S). Under
this equivalence relation, the equivalence classes of capped endo-p-permutation modules
have a natural group structure induced by the tensor product, which yields a group iso-
morphic to the subgroup of G-stable elements D(S)G−st in D(S). Unfortunately, this
definition of equivalence is too coarse; many interesting endo-p-permutation modules are
identified with each other. For example, if S is normal in G, then any two one-dimensional
kG-representations with kernel S are equivalent.

Another approach to defining the Dade group of a finite group is given by Lassueur
in [24]. There, one considers endo-p-permutation modules that are endotrivial relative to
the family of non-Sylow p-subgroups of G. Such modules are called strongly capped. Every
strongly capped kG-module M has a unique indecomposable summand, called the cap of
M . Two strongly capped modules are declared equivalent if their caps are isomorphic.
Lassueur defines the Dade group D(G) as the group whose elements are the equivalence
classes of strongly capped endo-p-permutation kG-modules and whose group operation is
induced by the tensor product (see [24, Cor.Def. 5.5]).

Lassueur’s definition of the Dade group captures the differences between one dimensional
representations when the Sylow p-subgroup S is normal in G. Moreover, the relationship
between Lassueur’s Dade group and Urfer’s G-stable elements notion is completely under-
stood: Let Υ(G) ≤ D(G) denote the subgroup of equivalence classes of strongly capped in-
decomposable kG-modules corresponding to one-dimensional representations of NG(S)/S
under the Green correspondence. Lassueur proves that there is a short exact sequence of
abelian groups

0→ Υ(G)→ D(G)→ D(S)G−st → 0

where the second map in the sequence is given by restriction to the Dade group of S (see
[24, Theorem 7.3]).

As a generalization of Lassueur’s definition of strongly capped endo-p-permutation mod-
ule, we define a notion of a Dade kG-module.

Definition 1.1. A kG-module M is a Dade kG-module if there is an integer n ≥ 0 such
that

End(M) ∼= kn ⊕W
for some p-permutation module W , all of whose indecomposable summands have vertices
that are non-Sylow p-subgroups of G.

A Dade module is capped if it has a Sylow-vertex component, or equivalently if n ≥ 1 in
the above decomposition (see Lemma 2.6). Two Dade modules M and N are compatible if
M ⊕N is a Dade module, or equivalently if M∗ ⊗N is a Dade module. Being compatible
defines an equivalence relation on the set of capped Dade modules, which we denote by
M ∼ N (see Lemma 2.14). We show the following:

Theorem 1.2. Let D(G) denote the set of equivalence classes of capped Dade kG-modules
under the equivalence relation defined above. Then the operation [M ] + [N ] := [M ⊗ N ]
defines an abelian group structure on D(G). Moreover, the group D(G) defined this way
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is isomorphic to the Dade group defined by Lassueur in [24] using relative endotrivial
modules.

We prove Theorem 1.2 in two parts, as Propositions 2.15 and 3.10. We also show that
every capped Dade module has, up to isomorphism, a unique indecomposable summand
with vertex S, called the cap of M (see Proposition 3.4). The cap of a Dade module
is a strongly capped endotrivial module in the sense of Lassueur. In fact, an endo-p-
permutation kG-module M is strongly capped if and only if M is a capped Dade module
with a unique copy of its cap (see Proposition 3.8).

One important source of Dade modules are the kG-modules defined as relative syzygies.
Given a G-set X, the kernel of the augmentation map ε : kX → k is called the relative
syzygy of X, and is denoted by ∆(X). Since the restriction of ∆(X) to S is a endo-
permutation module, ∆(X) is an endo-p-permutation module. Using arguments similar to
those used in the p-group case, one can show that if X is a G-set such that XS = ∅, then
∆(X) is a capped Dade module, and hence defines a class ΩX := [∆(X)] in D(G). We
extend this definition to all G-sets by declaring ΩX = 0 whenever XS 6= ∅.

Definition 1.3. The subgroup of D(G) generated by the elements ΩX as X ranges over
all G-sets is called the Dade group generated by relative syzygies, and is denoted by DΩ(G).

Many results known for relative syzygies over p-groups hold for relative syzygies over
finite groups as well. We prove these results in Section 5. In particular, we show that
DΩ(G) is generated by relative syzygies of the form ΩG/P where P ≤ G is a non-Sylow
p-subgroup of G (see Proposition 5.14).

For a finite group G and a fixed prime p, we denote by Fp the family of all p-subgroups
in G. A function f : Fp → Z that is constant on the G-conjugacy classes of subgroups
in Fp is called a superclass function. The set of superclass functions defined on Fp forms
a group under addition. We denote this group by C(G, p). For each G-set X, there is a
superclass function ωX defined by

ωX(P ) =

{
1 if XP 6= ∅,
0 otherwise.

There are relations among the superclass functions ωX coming from the inclusion-exclusion
principle. We prove that all relations satisfied by the generators ωX in C(G, p) are already
satisfied by the generators ΩX of DΩ(G). This gives us the following:

Theorem 1.4. There is a well-defined surjective group homomorphism

ΨG : C(G, p)→ DΩ(G)

that sends ωX to ΩX for every G-set X.

We prove this theorem in Section 6. We call the homomorphism ΨG the Bouc homo-
morphism for G since it is a generalization of the homomorphism defined by Bouc in [8]
for p-groups.

In the rest of the paper we focus on identifying the kernel of the homomorphism ΨG in
terms of the subgroup of dimension functions of k-orientable real representations. The di-
mension function of a real representation V is the superclass function Dim(V ) : C(G, p)→
Z defined by

Dim(V )(P ) = dimR(V P )

for every p-subgroup P ≤ G.
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For a real G-representation V , let S(V ) denote the unit sphere of V under a G-invariant
norm. Then X := S(V ) is a G-space, and for every p-subgroup P ≤ G, the fixed point
subspace XP = S(V P ) is homeomorphic to a sphere of dimension dim(V P )− 1.

Definition 1.5. A real G-representation V is called k-oriented if the NG(P ) = NG(P )/P -

action on the reduced homology group H̃∗(S(V )P , k) ∼= k is trivial for every P ∈ Fp. The
set of isomorphism classes of k-orientable real representations forms a group under direct
sum, which we denote by R+

R (G, k).

There is a group homomorphism

Dim : R+
R (G, k)→ C(G, p)

that takes a representation V to its dimension function. The main result of this paper is
the following theorem.

Theorem 1.6. The image of the dimension function Dim : R+
R (G, k) → C(G, p) lies in

the kernel of Bouc homomorphism ΨG : C(G, p)→ DΩ(G).

We prove Theorem 1.6 in Section 8. The proof relies on topological methods, which
require us to consider Moore G-spaces. A Moore G-space over k relative to the family Fp
is a G-CW-complex X such that for every P ∈ Fp, the fixed-point subspace XP is a Moore

space over k, i.e., the reduced homology H̃∗(X
P ; k) is nonzero only in a single dimension.

The dimension function of a Moore G-space X is defined to be the superclass function
Dim(X) : C(G, p)→ Z satisfying

Dim(X)(P ) = dim(XP ) + 1

for every p-subgroup P ∈ Fp.
If V is a k-oriented real G-representation, then the unit sphere X = S(V ) can be

triangulated to obtain a G-CW-complex, which is a Moore G-space whose homology is
the trivial module k. Note that the dimension function of X = S(V ) as a Moore G-space
coincides with the algebraic dimension function Dim(V ) defined before.

We show that the reduced homology of an n-dimensional Moore G-space X whose point-
stabilizers are all non-Sylow p-subgroups is a capped Dade kG-module. Moreover, if Xi

denotes the G-set of i-cells of X, then we have that the equality

[H̃n(X; k)] =
n∑
i=1

ΩXi

holds in DΩ(G) (see Theorem 7.10). This gives the equality [H̃n(X; k)] = ΨG(Dim(X))
under some minor technical assumptions. This is analogous to the result proved in [31] for
Moore S-spaces when S is a p-group.

We then consider Moore G-spaces whose isotropy subgroups are arbitrary, including the
possibility that XS is nonempty. If X is a Moore space such that XS is m-dimensional, we

say X is capped if the reduced homology module H̃m(XS ; k) has the trivial module k as a
summand. We prove in Theorem 8.4 that if X is a capped n-dimensional Moore G-space,

then the reduced homology module H̃n(X; k) has a summand M that is a Dade module
whose class in D(G) is equal to

∑n
i=1 ΩXi = ΨG(Dim(X)). We then apply this result to

a k-orientable real representation sphere X = S(V ) and obtain that ΨG(Dim(X)) = 0 in
DΩ(G). This completes the proof of Theorem 1.6 (see the end of Section 8).
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In the last section of the paper, we study the subgroup of C(G, p) formed by dimension
functions of k-orientable real representations of G. We show that these superclass functions
are characterized by a set of conditions defined on certain subquotients of G. Some of these
conditions come from the Borel-Smith conditions defined on p-subgroups of G. We denote
the subgroup of C(G, p) satisfying the Borel-Smith conditions on the p-subgroups of G
by Cb(G, p) (see Definition 9.1). We also consider some additional conditions called the
oriented Artin conditions similar to the conditions given by Bauer in [2] for finite groups
(see Definition 9.6). We denote by Cba+(G, p) the subgroup of C(G, p) satisfying both the
Borel-Smith conditions and the oriented Artin conditions.

By modifying the arguments given by Bauer, we show that the image of the dimension
function Dim : R+

R (G) → C(G, p) is equal to the subgroup Cba+(G, p). For p = 2 the
oriented Artin conditions always hold by trivial reasons, so in that case we have Cb(G, p) =
Cba+(G, p). This allows us to conclude the following:

Corollary 1.7. With the notation introduced above, we have

Cba+(G, p) ⊆ ker ΨG ⊆ Cb(G, p).

Moreover, when p = 2, all the subgroups above are equal and we have a short exact sequence
of abelian groups

0→ Cb(G, 2)
j−→C(G, 2)

ΨG−→DΩ(G)→ 0.

It is an open question whether the equality Cba+(G, p) = ker ΨG also holds when p
is odd. This question is related to the existence of well-defined restriction and deflation
maps on DΩ(−) that commute with the homomorphism Ψ(−). If such maps exist, then one
can prove the equality Cba+(G, p) = ker ΨG using an inductive argument and by applying
Lemma 9.11. Conversely, the existence of an exact sequence as the one given in Corollary
1.7 gives a biset functor structure to DΩ(−), in a modified sense that allows only deflations
with normal p-subgroups.

Acknowledgement: The second author is supported by a Tübitak 1001 project (grant
no: 116F194).
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2. Dade modules

Throughout this paper, let G be a finite group and p a prime number, not necessarily di-
viding |G|. We write S for a Sylow p-subgroup of G and P,Q, . . . for arbitrary p-subgroups.
Let k be a fixed algebraically closed field of characteristic p.

Our aim in this section is to give the definition and basic properties of Dade kG-
modules. We assume that all modules are finitely generated. For a kG-module M , we
write M∗ for the dual kG-module Homk(M,k). When N is a summand of M we use the
standard notation N |M to express this relation. An indecomposable direct summand of
a kG-module M is called a component of M .

We recall the following notion: The kG-module M is called a permutation kG-module if
M has a G-invariant k-basis X, i.e., g ·X = X for all g ∈ G. Any permutation kG-module
can be written

M ∼=
⊕

[H≤G]

cH · k[G/H], (2.1)

where the sum is taken over the G-conjugacy classes of subgroups of G and each cH is
some non-negative integer.

If G = S is a p-group, Green’s Indecomposability Criterion implies that a transitive
permutation S-module is indecomposable (see [29, Cor 11.6.3]). Hence in this case the
right hand side of Equation (2.1) is uniquely determined by the left. In particular, any
direct summand of a permutation kS-module is also a permutation kS-module.

For arbitrary finite groups none of these properties needs to hold, so we turn to a more
natural class of a module.

Definition 2.1. A kG-module M is called a p-permutation module if any of the following
equivalent conditions is satisfied:

(i) The restriction ResGS M is a permutation kS-module.
(ii) M is a direct summand of a permutation module of the form⊕

[P≤G]

cP · k[G/P ],

where the sum is taken over the G-conjugacy classes of p-subgroups of G.
(iii) M is a direct summand of a permutation module.

The equivalence of the above conditions is easy to show. The main observation is that
a kG-module M is a direct summand of the module IndGS ResGS M , which gives the im-
plication (i) =⇒ (ii). The other implications are obvious (see [3, Lemma 3.11.2] for
details).

Given an indecomposable kG-module M , there is a subgroup H ≤ G that is minimal
with the property that M is a summand of IndGH ResGHM . Such a subgroup is called a
vertex of M . It is easy to see that a vertex of M is a p-subgroup of G and that any two
vertices are G-conjugate.

If M is an indecomposable kG-module with vertex P , then there is an indecomposable
kP -module U such that M is a direct summand of IndGP U . This module is unique up to
isomorphism and conjugation by elements in NG(P ), and is called the source of M (see
[29, Thm 11.6.1]).

From Definition 2.1, it is easy to see that an indecomposable kG-module M is a p-
permutation kG-module if and only if a vertex-source pair of M is of the form (P, k), so
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that the source is the trivial kP -module. A kG-module is called a trivial source module if
all of its components have a trivial source. A kG-module M is a p-permutation module if
and only if it is a trivial source module.

Definition 2.2. LetM be a p-permutation kG-module. A component ofM whose vertex is
a Sylow p-subgroup of G is called a Sylow-vertex component of M . We call a p-permutation
module Sylow-vertex trivial if all its Sylow-vertex components, should they exist, are
isomorphic to k.

Note that a Sylow-vertex trivial p-permutation kG-module is isomorphic to a direct
sum of the form kn ⊕W , where n ≥ 0 is a natural number and W is a p-permutation
module whose components all have non-Sylow vertices. It is easy to see the following:

Lemma 2.3. The class of Sylow-vertex trivial p-permutation kG-modules is closed under
taking direct sums, direct summands, and tensor products.

We now expand from permutation and p-permutation kG modules to a larger class.
Recall that the kG-module M is an endo-permutation kG-module if End(M) ∼= M∗⊗M is
a permutation kG-module via the natural diagonal action. As above, this definition really
works best when G = S is a p-group, but it has the following natural extension: We say
that M is an endo-p-permutation kG-module if End(M) is a p-permutation kG-module,
or equivalently if ResGS (M) is an endo-permutation kS-module.

In this paper we consider endo-p-permutation kG-modules that satisfy an extra prop-
erty. A kG-module M is called a Dade kG-module if

End(M) ∼= kn ⊕W

for some n ≥ 0 and for some p-permutation module W , all of whose components have non-
Sylow vertices (see Definition 1.1). In other words, a kG-module M is a Dade module if
End(M) ∼= M∗⊗M is a Sylow-vertex trivial p-permutation module. By definition a Dade
module is an endo-p-permutation module, but not every endo-p-permutation module is a
Dade module.

Example 2.4. Consider the symmetric group G = Σ3 at the prime p = 3. The Sylow
3-subgroup S is isomorphic to C3, the cyclic group of order 3. Let M = k[G/S] be the per-
mutation kG-module whose basis is the transitive G-set G/S. Then M is a p-permutation
module, hence an endo-p-permutation module. However, M is not a Dade module since

End(M) ∼= M∗ ⊗M ∼= 2k[G/S] ∼= 2k ⊕ 2k(−1),

where k(−1) denotes the alternating representation of G. Note that the component k(−1)
of End(M) has vertex S but is not trivial.

We also have a notion of a capped Dade module.

Definition 2.5. A Dade kG-module M is capped if it has a Sylow-vertex component.

There are equivalent ways to say a Dade module is capped.

Lemma 2.6. Let M be a Dade kG-module. Then the following are equivalent:

(i) M is capped, i.e., M has a component with vertex S.
(ii) ResGS M is a capped endo-permutation kS-module.

(iii) k is a summand of End(M).
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Proof. If M has a component with vertex S, then ResGS M also has a component with
vertex S, so ResGS M is a capped endo-permutation module. This gives (i)⇒ (ii).

Now assume ResGS M is a capped endo-permutation kS-module. Then ResGS (End(M)) =
End(ResGS M) has k as a summand (see [9, Lemma 12.2.6]). Since End(M) ∼= kn⊕W where
W has no components with vertex S, we see that we must have n ≥ 1 in order to have
that k is a summand of ResGS (End(M)). This gives (ii)⇒ (iii).

To show the final implication (iii) ⇒ (i), observe that if all components of M have
vertices strictly smaller than S, then all components of End(M) ∼= M∗ ⊗M have vertices
strictly smaller than S as well, so that k cannot be a summand of End(M). �

An indecomposable summand of a capped Dade module M is called a cap of M . In
Section 3 we show that the cap of a Dade kG-module M is unique up to isomorphism
(Theorem 3.4), so we will write Cap(M) for the isomorphism class of the cap of M without
confusion.

We note that the property of being a Dade module is detected on the normalizer of a
Sylow p-subgroup.

Lemma 2.7. A kG-module M is a (capped) Dade module if and only if ResGNG(S)M is a

(capped) Dade kNG(S)-module.

Proof. The “only if” assertion is trivial. For the other direction, assume that ResGNG(S)M

is a Dade kNG(S)-module. Then

ResGS M = Res
NG(S)
S ResGNG(S)M

is an endo-permutation kS-module, and hence M is an endo-p-permutation module. Let
U be a Sylow-vertex component of End(M) (if there is any). Then ResGNG(S) U is a Sylow-

vertex component of

ResGNG(S)(End(M)) ∼= End(ResGNG(S)M) ∼= kn ⊕W,

where all the components of the NG(S)-module W have non-Sylow vertices. This gives
that ResGNG(S) U

∼= k. By the Green correspondence, we obtain that U ∼= k as a kG-module.

This proves that M is a Dade kG-module. �

We now give a few examples of capped Dade modules.

Example 2.8. If G = S is a p-group, then the notions of endo-permutation kS-module and
Dade kS-module coincide, and the adjective “capped” is consistent with this identification.
More generally, Lemma 2.7 implies that if S is self-normalizing in G, then every endo-p-
permutation kG-module is a Dade module.

Example 2.9. Every one-dimensional character χ : G → k is a capped Dade kG-module,
as End(χ) ∼= χ∗ ⊗ χ ∼= k. More generally, if M is an indecomposable kG-module whose
Green correspondent is a one-dimensional kNG(S)-module, then by Lemma 2.7, M is a
capped Dade module. The Dade modules obtained this way generate a subgroup of the
Dade group denoted by Υ(G), which is equal to the kernel of the restriction map from the
Dade group of G to the Dade group of S (see Theorem 4.8).

Example 2.10. Let X be a G-set such that XS = ∅, and let ∆(X) denote the kernel of the
augmentation map ε : kX → k defined by ε(x) = 1 for all x ∈ X. Then ∆(X) is a capped
Dade module (see Proposition 5.5).
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Example 2.11. A kG-module M is called endotrivial if M∗⊗M ∼= k⊕(proj). An endotrivial
kG-module is a Dade module since a projective module is easily seen to be a p-permutation
module. In particular, if M is a Sylow-trivial module in the sense of [19], i.e., if ResGS M

∼=
k⊕ (proj), then M is an endotrivial module, and hence also a Dade module (see [13, Thm
2.2]).

It is immediate that the class of Dade modules is closed under taking a direct summand
and tensor products, although not in general under taking direct sums (just as the direct
sum of two endo-permutation kS-modules need not be endo-permutation). We use this to
define an equivalence relation on Dade modules.

Definition 2.12. The Dade kG-modules M and N are compatible if M ⊕ N is a Dade
module.

There is a useful alternative way to define compatibility of Dade modules.

Lemma 2.13. The Dade kG-modules M and N are compatible if and only if Hom(M,N) ∼=
M∗ ⊗N is a Sylow-vertex trivial p-permutation module.

Proof. Dade’s original argument [16, Proposition 2.3] applies here too. Consider the stan-
dard decomposition

End(M ⊕N) ∼= End(M)⊕ End(N)⊕Hom(M,N)⊕Hom(N,M)

of kG-modules, together with the isomorphism Hom(N,M) ∼= Hom(M,N)∗. As the dual
of a Sylow-vertex trivial module is Sylow-vertex trivial, the result is immediate. �

The following is a direct consequence of Lemma 2.13.

Lemma 2.14. The compatibility relation is an equivalence relation on the set of capped
Dade modules. We denote this relation by M ∼ N .

Proof. The relation is reflexive by the definition of Dade module and Lemma 2.13. It is
clearly symmetric as it is defined by a direct sum. For transitivity, assume that M ∼ N
and N ∼ L. Then

T := (M∗ ⊗N)⊗ (N∗ ⊗ L)

is a Sylow-vertex trivial p-permutation module. Since N is capped, we have N ⊗ N∗ ∼=
kn ⊕W for some n ≥ 1. This gives that M∗ ⊗ L is a summand of T , hence the result
follows from the fact that a summand of a Sylow-vertex trivial module is Sylow-vertex
trivial. �

Proposition 2.15. Let D(G) denote the set of equivalence classes of capped Dade kG-
modules with respect to the compatibility relation. Then the operation [M ]+[N ] := [M⊗N ]
defines an abelian group structure on D(G).

Proof. It is clear that the tensor product of two capped Dade modules is a capped Dade
module. For well-definedness we need to show that if M ∼M ′ and N ∼ N ′, then M⊗N ∼
M ′⊗N ′, which follows easily from the definition of compatibility. So the operation is well-
defined and it is obviously commutative. The zero element is the equivalence class [k] of
the trivial module. The inverse of [M ] is [M∗]. �

When we want to emphasize the field k, we write Dk(G) for the Dade group. In the
next section we show that the Dade group defined in Proposition 2.15 is isomorphic to the
Dade group defined by Lassueur (see Proposition 3.10).
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3. Indecomposable Dade modules and Lassueur’s Dade group

We begin with a lemma due to Benson and Carlson:

Lemma 3.1 ([4, Theorem 2.1]). Let M and N be indecomposable kG-modules. The trivial
module k is a component of M ⊗N if and only if M ∼= N∗ and p - dimkM , in which case
M ⊗N contains exactly one copy of k.

We will also need another result due to Lassueur. Recall that for a fixed kG-module V ,
a kG-module M is called V -projective or projective relative to V , if there is a kG-module
N such that M | V ⊗N .

Lemma 3.2 ([24, Lemma 5.1]). Let M be an indecomposable endo-p-permutation kG-
module with vertex S. Then

(i) ResGS M is a capped endo-permutation kS-module.
(ii) p - dimkM .

(iii) k is a summand of End(M) with multiplicity 1.

Proof. We give a self-contained proof here; more details can be found in [24, Lemma 5.1].
Let M be an indecomposable endo-p-permutation module with vertex S. Then ResGS M is
an endo-permutation module that has a summand with vertex S, hence it is capped (see
[9, Definition 12.2.5]). This proves (i). By Lemma 3.1, (ii) and (iii) are equivalent, so it
remains to show that (ii) holds.

Let U be a component of ResGS M with vertex S. By applying Higman’s Criteria [3, Prop
3.6.4], we conclude that End(U) ∼= U∗ ⊗ U has the trivial module k as a summand (see
[9, Lemma 12.2.6]). This gives that k is projective relative to U , hence it is also projective
relative to ResGS M . Let N be a kS-module such that k | N ⊗ (ResGS M). Then

IndGS k | IndGS (N ⊗ ResGS M) ∼= (IndGS N)⊗M

by Frobenius Reciprocity. Since [G : S] is coprime to p, we have k | IndGS k
∼= k[G/S].

Hence k | (IndGS N) ⊗M . This means that there is a component V of IndGS N such that
k | V ⊗M . Applying Lemma 3.1 to V and M , we conclude that p - dimkM . This completes
the proof. �

It is interesting to ask whether every indecomposable endo-p-permutation module is a
Dade module. The following example shows that the answer is “no” in general.

Example 3.3. Let G = D8 be the dihedral group of order 8 and set Z = Z(G). Let p be
an odd prime. Then S = 1 and every kG-module is semisimple. Let M be the (unique)
2-dimensional irreducible kG-module. Then, M is an endo-p-permutation module because
its restriction to S is a direct sum of trivial modules. However M is not a Dade module
because End(M) ∼= k[G/Z] has a nontrivial Sylow-vertex summand.

More generally, if G is a finite group such that S E G with G/S nonabelian, we can take
M to be an irreducible G/S-representation of degree at least 2. Viewing M as a G-module
by inflation, we have by construction that the S-action on M is trivial, and hence M is
an endo-p-permutation kG-module. We similarly have that S acts trivially on End(M),
so that all components of the endomorphism module have Sylow vertices. Schur’s Lemma
implies that End(M) contains a unique trivial summand, but as dim(End(M)) > 1 there
must be a second nontrivial Sylow-vertex component. Thus M is not a Dade module.
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We now prove the uniqueness of the cap of an endo-permutation kS-module by adapting
Dade’s original argument from [16, Theorem 3.8] to our situation.

Proposition 3.4. Let M be a capped Dade kG-module. If U and V are two Sylow-vertex
components of M , then U ∼= V .

Proof. Let U and V be two Sylow-vertex components of M . Consider the kG-module
Hom(U, V ) ∼= U∗ ⊗ V , which is a direct summand of End(M). If we can show that
Hom(U, V ) contains a Sylow-vertex component, then this component will also be a com-
ponent of End(M), and thus isomorphic to the trivial kG-module k by the assumption
that End(M) is Sylow-vertex trivial. Lemma 3.1 will then imply that U∗ ∼= V ∗, and hence
U ∼= V , as desired.

Consider U ⊗U∗⊗ V ∼= End(U)⊗ V . Since U has vertex S, by Lemma 3.2 End(U) has
the trivial module k as a component. Thus V is a Sylow-vertex component of U⊗(U∗⊗V ).
As the vertices of the components of a tensor product of indecomposable kG-modules are
contained in the intersection of the vertices of the modules being tensored, it follows that
U∗ ⊗ V has a Sylow-vertex component, and the result is proved. �

As a consequence, every capped Dade kG-module M has a unique (up to isomorphism)
indecomposable Sylow-vertex summand. As mentioned before, we call this summand the
cap of M and denote it by Cap(M). We may then define the Dade group of G, written
D(G), to be the the set of isomorphism classes of indecomposable capped Dade kG-modules
with abelian group structure

[M ] + [N ] := [Cap(M ⊗N)].

Clearly the identity for this operation is [k], and the inverse of [M ] is [M∗]. This definition
gives the same Dade group as that defined in Theorem 1.2 because of the following lemma:

Lemma 3.5.

(i) Let U be a Sylow-vertex component of the Dade kG-module M . Then U is a capped
Dade module and U ∼M .

(ii) Let U and V be two capped indecomposable Dade kG-modules. Then U ∼ V if
and only if U ∼= V .

Proof.

(i) Since U∗ ⊗ U is a summand of M∗ ⊗M , we conclude that U is a capped Dade
module. Note that U∗ ⊗M is a summand of M∗ ⊗M , hence U∗ ⊗M is a Sylow-
vertex trivial p-permutation module. Hence by Lemma 2.13, U is compatible with
M .

(ii) If U and V are compatible, then U⊕V is a Dade kG-module. Applying Proposition
3.4, we obtain that U ∼= V . For the converse, observe that if U ∼= V , then U∗⊗V ∼=
U∗⊗U is a Sylow-vertex trivial p-permutation module. Hence U ∼ V by Lemma
2.13.

�

The isomorphism between these two definitions of the Dade group is given by

[M ] 7→ [Cap(M)],
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where the brackets on the left indicate the equivalence class of the capped Dade module,
while those on the right refer to the isomorphism class of the capped indecomposable Dade
module.

We now discuss Lassueur’s definition of the Dade group of a finite group, where the
subject is approached using relative endotrivial modules (see [24, Cor.Def. 5.5]). If V is
a kG-module such that the trivial module k is V -projective, then all kG-modules are V -
projective. It is therefore most interesting to consider the case where k is not V -projective.
If V has a summand Vi such that p - dimk Vi, then k | End(Vi), and hence k | End(V ) ∼=
V ∗⊗V . Therefore if we want k not to be V -projective, we must have p | dimk Vi for every
component Vi of V (see [24, Prop 2.6]). A kG-module V satisfying this property is called
absolutely p-divisible.

Definition 3.6. Let V be an absolutely p-divisible kG-module. A kG-module M is en-
dotrivial relative to V , or simply V -endotrivial, if End(M) is isomorphic to k⊕W for some
V -projective kG-module W . In this case we write End(M) ∼= k ⊕ (V − proj).

Recall that a kG-module is called endotrivial if End(M) ∼= k ⊕W for W a projective
kG-module. Hence an endotrivial module is a V -endotrivial module in the case where
V = kG. Relative endotrivial modules have properties similar to endotrivial modules (see
[24, Lemma 2.8]). In particular, given a V -endotrivial module M , there is a direct sum
decomposition M ∼= M0 ⊕ (V − proj), where M0 is the unique indecomposable summand
of M that is V -endotrivial. This summand is called the cap of M .

Two V -endotrivial modules M and N are declared equivalent if their caps M0 and N0

are isomorphic. Lassueur defines the group TV (G) of V -endotrivial modules as the group of
equivalence classes of V -endotrivial modules, with addition given by [M ]+[N ] := [M⊗N ].

To define the Dade group of a finite group, Lassueur considers V -endotrivial modules
for a special choice of permutation module V .

Definition 3.7. Let FG denote the set of all non-Sylow p-subgroups of G, and FG/G
the G-conjugacy classes of subgroups in FG. The kG-module V (FG) is defined to be the
permutation module

V (FG) :=
⊕

[Q]∈FG/G

k[G/Q].

It is easy to see that k is not V (FG)-projective since k has vertex S. In particular, V (FG)
is absolutely p-divisible. Note that a module’s being V (FG)-projective is equivalent to its
not having any Sylow-vertex components. For V (FG)-endotrivial modules Lassueur proves
the following result:

Proposition 3.8 ([24], Proposition 5.2). Let M be an endo-p-permutation module. The
following are equivalent:

(i) M is V (FG)-endotrivial.
(ii) ResGS M is V (FS)-endotrivial.

(iii) M has a unique indecomposable summand M0 with vertex S.
(iv) End(M) ∼= k ⊕W , where W is a p-permutation kG-module all of whose compo-

nents have non-Sylow vertices.

Lassueur calls an endo-p-permutation module strongly capped if it satisfies the equivalent
conditions of Proposition 3.8. The unique indecomposable summand M0 of M is called
the cap of M . Similar to the V -endotrivial case, one defines M ∼ N if M0

∼= N0. Lassueur
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defines the Dade group D(G) of a finite group G as the group of equivalence classes of
strongly capped endo-p-permutation modules with addition given by [M ]+[N ] := [M⊗N ].

Lassueur’s definitions are related to our notion of a Dade module by the following
observation.

Lemma 3.9. The endo-p-permutation kG-module M is strongly capped if and only if it
is a capped Dade module with a unique copy of its cap.

Proof. If M is strongly capped, then by Lemma 3.8(iv) M is a Dade module such that
End(M) has a single copy of k. Note that if a Dade module has more than one copy of its
cap, then End(M) has more than one copy of k as a direct summand. This shows that M
must have only one copy of its cap.

For the other direction, observe that if M is an indecomposable Dade module with
vertex S then by Lemma 3.2 the trivial module k has multiplicity one in End(M). Hence
M is strongly capped. This shows that if M is a Dade module with a unique copy of its
cap, then M is strongly capped. �

As a consequence of Lemma 3.9 we can conclude the following:

Proposition 3.10. The Dade group D(G) of a finite group G defined in Theorem 1.2 is
isomorphic to the Dade group defined by Lassueur in [24, Cor.Def. 5.5].

Proof. This follows from Lemma 3.5 and the discussion thereafter. If we write D′(G)
for Lassueur’s Dade group, then there is a natural map D′(G) → D(G) that takes the
equivalence class [M ] of a strongly capped endo-p-permutation moduleM to its equivalence
class [M ] in D(G). In the other direction, we have D(G) → D′(G) defined by [M ] 7→
[Cap(M)]. It is easy to see by Lemma 3.5 that these maps are well-defined mutual inverses.

�

Remark 3.11. In [23], Lassueur also considers the possibility of defining the Dade group
using endo-p-permutation modules that contain multiple copies of their caps. Such endo-
p-permutation modules are termed weakly capped, however an independent condition for
being weakly capped is not given. By Proposition 3.4, a Dade module is a weakly capped

kG-module, so our definition of the Dade group D(G) coincides with D̃(G) defined on
[23, pg. 92].

4. Tensor induction of Dade modules

As we have shown in the previous section, the notion of a Dade module is a slight
generalization of Lassueur’s “strongly capped” endo-p-permutation modules: A capped
Dade module may contain multiple (isomorphic) caps, while a strongly capped endo-p-
permutation module by definition has a unique Sylow-vertex component. Our relaxation
was motivated by the fact that the class of strongly capped endo-p-permutation modules
is not closed under tensor induction (see [24, Counterexample 6.3]). We show below that
in the example considered by Lassueur, tensor induction of a particular strongly capped
endo-p-permutation module does yield a Dade module, even though it is no longer strongly
capped. However, we also give a different example to show that the class of Dade modules
is not generally closed under tensor induction.

Recall that for a subgroup H ≤ G, the tensor-induced kG-module TenGHM of the kH-

module M is defined analogously to the usual induction IndGHM , but with the direct sum
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replaced by a tensor product:

IndGHM :=
⊕

gH∈G/H

g ·M vs. TenGHM :=
⊗

gH∈G/H

g ·M.

The G-action on TenGHM is induced by the embedding G ↪→ ΣG/H oH. We refer the reader
to [3, Section 3.15] for more details.

Let G be a finite group with S ∈ Sylp(G), and let Ω denote the kernel of the augmen-
tation map ε : kS → k. By Alperin’s theorem on relative syzygies [1], the kS-module Ω is
an endo-permutation module. An easy calculation shows that

End(Ω) ∼= Ω∗ ⊗ Ω ∼= k ⊕m · k[S/1]

as kS-modules, where m = |S|−2. Since tensor induction commutes with tensor products
we have

End(TenGS Ω) ∼= TenGS (End(Ω)) ∼= TenGS (k ⊕m · k[S/1]).

Let X := [S/S] +m · [S/1]. We want to compute TenGS (kX).

For an S-set X, let JndGS (X) denote the G-set MapS(G,X), where the G-action is given
by the rule g · ϕ : g′ 7→ ϕ(g′g). This determines a functor JndGS : S-set → G-set, called
multiplicative induction (see [30, Sect. 3]). From the definition of tensor induction, and by
the fact that kX ⊗ kY ∼= k[X × Y ], it is easy to see that

TenGS (kX) ∼= k[JndGS X]

(see [9, Example 12.4.10]). As End(TenGS Ω) ∼= TenGS (kX) ∼= k[JndGS X] is a permutation
kG-module, TenGS (Ω) is endo-p-permutation. To see that TenGS (Ω) is a Dade kG-module,
it remains to show that the Sylow-vertex components of its endomorphism module are
trivial.

We can write
JndGS X =

∑
[H≤G]

nH · [G/H]

for some natural numbers nH ≥ 0. This gives the kG-module isomorphism

End(TenGS Ω) ∼= k[JndGS X] ∼=
⊕

[H≤G]

nH · k[G/H].

Note that if T is a Sylow p-subgroup of H, then the summand k[G/H] is relatively T -
projective. From this we can conclude that the only components of k[JndGS (X)] that could
possibly be Sylow-vertex are summands of k[G/H] where p - [G : H]. This observation
allows us to prove the following:

Lemma 4.1. With notation as above, if Op(G) 6= 1 then TenGS Ω is a strongly capped Dade
module.

Proof. For a G-set Y and a subgroup K ≤ G, write fK(Y ) for the order of the fixed-point
set Y K . Recall that Y is determined as a G-set by the values {fK(Y )} as K ranges over the
G-conjugacy classes of subgroups of G. For multiplicative induction we have the following
formula (see [30, Sect. 3]):

fK(JndGS X) =
∏

KgS∈K\G/S

fKg∩S(X). (4.1)

Since X = [S/S] + m · [S/1], we have fKg∩S(X) = 1 whenever Kg ∩ S 6= 1. If K is a
subgroup of G such that p - [G : K], then K must contain a Sylow p-subgroup of G, and
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hence K contains Op(G) 6= 1. This implies that for every g ∈ G we have Kg ∩ S 6= 1,

so fK(JndGS (X)) = 1 for every K with p′-index. It follows that nG = 1 and nK = 0 for
all K � G with p′-index. Thus End(TenGS Ω) ∼= k[JndGS (X)] has a unique Sylow-vertex
component, which is k. The result is proved. �

When Op(G) = 1, the conclusion of Lemma 4.1 need not hold, as Lassueur illustrates
in [24, Counterexample 6.3].

Example 4.2. Consider the group G := C7 o C3 at the prime p = 3. In this case S = C3

and Ω is the unique 2-dimensional irreducible kS-module. By direct computation using
the fixed-point formula of Equation 4.1, we can see that

End(TenGS Ω) ∼= k[G/G]⊕ 3 · k[G/C7]⊕ 15 · k[G/C3]⊕ 7 · k[G/1].

Note that, as ResGS ([G/S]) = [S/S]+2·[S/1], we have k[G/S] ∼= k⊕U , where no component
of U is Sylow-vertex. Lassueur concludes that in this case TenGS Ω is not strongly capped.
However, it is also clear from the computation that TenGS Ω is a Dade module.

Unfortunately, the tensor induction TenGHM of a Dade module M need not be a Dade
module in general (even when H is of coprime index), as the following example shows:

Example 4.3. Let G = Σ4 be the symmetric group on 4 letters, and take p = 3. Then S ∈
Sylp(G) is again C3, the module Ω is a 2-dimensional kS-module, and X ∼= [S/S] + [S/1].
In this case we have

End(TenGS (Ω)) ∼= k[G/G]⊕ 3 · k[G/S3]⊕ 6 · k[G/S]⊕ · · ·

The coefficients above were computed using Equation 4.1 and the fixed-point values
fG(X) = 1, fA4(X) = 1, fS3(X) = 4, and fS(X) = 16. Note that

fA4(JndGS (X) =
∏

g∈A4\S4/S

fAg
4∩S(X) = (fS(X))2 = 1

since fS(X) = 1. We also have

fS(JndGS (X)) =
∏

g∈S\S4/S

fSg∩S(X) = (fS(X))2(f1(X))2 = 16

since fS(X) = 1 and f1(X) = 4. The values of fK for other subgroups are computed in a
similar way.

The module k[G/S] contains a copy of the alternating representation. It follows that
End(TenGS (Ω)) has a non-trivial Sylow-vertex component, so TenGS (Ω) is not a Dade mod-
ule. �

On the positive side, for G = Σ3, we do have TenGC3
Ω is a Dade module by Lemma 4.1.

In this case we have

End(TenGC3
Ω) = TenGC3

(kX) = k ⊕ 3k[G/C2]⊕ k[G/1].

This is a special case of a more general observation that holds for finite groups with normal
Sylow p-subgroup.

Lemma 4.4. Let G be a finite group such that S E G. Then for every indecomposable
endo-permutation kS-module M with vertex S, the tensor-induced module TenGS M is a
capped Dade module.
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Proof. Let X be the S-set such that End(M) ∼= kX. By the assumption that M has vertex
S, we have

X = [S/S] +
∑

[P<S]

nP · [S/P ],

where the sum is taken over the S-conjugacy classes of proper subgroups of S. (The
existence of the summand k = k[S/S] follows from [9, Lemma 12.2.6], its uniqueness from
Lemma 3.1). As above we have

End(TenGS M) ∼= TenGS (kX) ∼= k[JndGS X],

so TenGS M is an endo-p-permutation module. To find the components of End(TenGS M)

with vertex S, we need to consider the orbits [G/K] of JndGS X for those K satisfying
K ≥ S. Since S E G, we have

fS(JndGS X) =
∏

gS∈G/S

fS(X) = 1.

Since fG(JndGS X) = 1, we have [G/G] is an orbit in JndGS (X). Since fS(JndGS X) = 1, the
G-set JndGS X has no orbits [G/K] with S ≤ K < G. Hence TenGS M is a capped Dade
module. �

In certain circumstances, there is a restriction homomorphism between Dade groups.

Lemma 4.5. Let S be a Sylow p-subgroup of G, and let H be a subgroup of G containing
S. Then the restriction of a capped Dade kG-module to H is a capped Dade kH-module.
This induces a well-defined group homomorphism ResGH : D(G)→ D(H).

Proof. For every kG-module M , we have

End(ResGHM) ∼= ResGH(End(M)) ∼= ResGH(kn ⊕W )

for some endo-p-permutation kG-moduleW whose components have vertices strictly smaller
than S. Since S is also a Sylow p-subgroup of H, all the components of ResGHW have non-
Sylow vertices, so ResGHM is a capped Dade kH-module. �

The restriction homomorphism can be also described using strongly capped endo-p-
permutation modules (see [24, Lemma 6.1]). In general the restriction map ResGH is not
injective, but it is when H contains NG(S).

Proposition 4.6 (Lassueur [24], Lem. 6.1). Let H ≤ G be a subgroup such that NG(S) ≤
H. Then the restriction map ResGH : D(G)→ D(H) is an injection.

Proof. Suppose that ResGH [M1] = ResGH [M2]. Then ResGH(M1⊕M2) is a Dade kH-module.
By Lemma 4.5, ResGNG(S)(M1⊕M2) is also a Dade module. Applying Lemma 2.7 we obtain

that M1 ⊕M2 is a Dade kG-module. We conclude that [M1] = [M2]. �

The restriction map ResGH : D(G) → D(H) is not defined for an arbitrary subgroup
H ≤ G. Even though the restriction of an endo-p-permutation module is always an endo-
p-permutation module, the restriction ResGHM of a Dade kG-module M may not be a
Dade kH-module, due to the Sylow-vertex triviality condition.
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Example 4.7. Consider the group G = Σ3 at the prime p = 3. Let H = C2 and ∆(G/H)
denote the kernel of the augmentation map ε : k[G/H] → k. By direct computation, one
can see that the relative syzygy ∆(G/H) is a capped Dade module (or apply Proposition
5.5). Note that ∆(G/H) is an indecomposable kG-module because its restriction to S is
indecomposable. Set N := ResGH(∆(G/H)) ∼= k[H/1] ∼= k ⊕ k(−1), where k(−1) denotes
the one-dimensional sign representation for H. Then N is not a Dade kH-module because
End(N) ∼= End(k ⊕ k(−1)) has two Sylow-vertex components isomorphic to k(−1).

We end this section with a result by Lassueur on the structure of the Dade group
D(G). Following Lassueur’s notation, let X(NG(P )) denote the group of one-dimensional
representations of NG(S). We write Υ(G) for the subgroup of D(G) whose elements are
the isomorphism classes of the kG-modules arising as the Green correspondents of modules
in X(NG(S)). It is shown in [24, Proposition 4.1] that such modules are indeed strongly
capped endo-p-permutation modules.

Theorem 4.8 (Thm. 7.3, [24]). Let G be a finite group with Sylow p-subgroup S. Then
there is an exact sequence of abelian groups

0→ Υ(G)−→D(G)
ResGS−→ D(S)G-st → 0,

where D(S)G-st denotes the subgroup formed by G-stable elements in D(S) as defined in
[28, Def. 1.4].

This is an important structural result for the Dade group of a finite group that makes
computation possible in many cases. In particular, Theorem 4.8 shows that D(G) is a
finitely generated abelian group, as both Υ(G) and D(S)G-st are finitely generated.

5. The Dade group generated by relative syzygies

In this section, we describe an important class of Dade modules that will be the focus
of the remainder of the paper. For G an arbitrary finite group and X a non-empty finite
G-set, let ∆(X) denote the kernel of the augmentation map ε : kX → k defined by∑

x∈X
cx · x 7→

∑
x∈X

cx.

The kG-module ∆(X) is called the relative syzygy of X. Throughout the paper we assume
all G-sets are non-empty and finite.

When G = S is a p-group, Alperin showed in [1, Theorem 1] that ∆(X) is always an
endo-permutation kS-module and it is capped if |XS | 6= 1. For an S-set X with |XS | 6= 1,
we define the element ΩX := [∆(X)] ∈ D(S). When |XS | = 1, we declare that ΩX = 0.
The set of elements {ΩX}, as X runs over all finite S-sets, generates a subgroup DΩ(S)
of the Dade group D(S), called the Dade group generated by relative syzygies or the group
of relative syzygies. This group plays an important role in the calculation of the full Dade
group for p-groups.

Our goal in this section is to show that Alperin’s construction works in essentially the
same way to give rise to elements of D(G) when G is an arbitrary finite group. We follow
the arguments of [6], which actually do the vast majority of the work for us. Some of the
results in this section also appear in [22] and [24] in different forms, using the language of
relative endotrivial modules. We begin by recalling the definition of X-split sequences.
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Definition 5.1. ([6, Def. 2.1.1]) Let X be a finite G-set. An exact sequence of kG-
modules 0→ L→ M → N → 0 is called X-split if it splits after tensoring with kX, i.e.,
0→ L⊗ kX →M ⊗ kX → N ⊗ kX → 0 is a split-exact sequence of kG-modules.

There is also a notion of relative X-projectivity defined using a list of equivalent con-
ditions.

Definition 5.2. ([6, Def. 2.2.1]) LetX be a finiteG-set. A kG-moduleM is called relatively
X-projective if the following equivalent conditions are satisfied:

(i) M is a direct summand of kX ⊗N for some kG-module N .
(ii) The map kX ⊗M → M defined by x ⊗m 7→ m is a split epimorphism of kG-

modules.
(iii) The lifting problem

M

f

��

f̃

~~
L ϕ

// N // 0

has a solution whenever ϕ⊗ idkX : L⊗ kX → N ⊗ kX is a split epimorphism of
kG-modules.

These conditions are indeed equivalent, as can be seen by using arguments similar to
the standard ones given for projective kG-modules (see [3, Sect. 3.6]).

We now state a relative version of Schanuel’s Lemma ([6, Proposition 2.3.1]):

Lemma 5.3 (Relative Schanuel’s Lemma). For a finite G-set X, suppose that

0 // L // M // N // 0

0 // L′ // M ′ // N // 0

are two X-split short exact sequences of kG-modules, where M and M ′ are both relatively
X-projective. Then M ⊕ L′ ∼= M ′ ⊕ L.

Proof. The proof is similar to the proof of the well-known version of Schanuel’s lemma.
See [3, Lemmas 3.9.1 and 1.5.3]. �

We have the following technical result.

Lemma 5.4. Let X be a finite G-set and let ∆(X) denote the kernel of the augmentation
map ε : kX → k. Then there is an isomorphism of kG-modules

End(∆(X))⊕ kX ⊕ kX ∼= k ⊕ k[X ×X].

Proof. In the case that G = S is a p-group, this result is due to Alperin [1, Theorem 1].
His proof also works for finite groups. Here we give a proof based on an argument due to
Bouc [6, Lemma 2.3.3] that uses the Relative Schanuel’s Lemma.

We begin with the exact sequence

0→ ∆(X)→ kX → k → 0,

which we claim to be X-split. Indeed, after tensoring with kX we have

0→ ∆(X)⊗ kX → kX ⊗ kX → kX → 0,
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where the last map is given by x′ ⊗ x 7→ x. Clearly kX → kX ⊗ kX : x 7→ x⊗ x defines a
splitting, as desired. It is easy to see that the dual sequence

0→ k → kX → ∆(X)∗ → 0

is X-split as well, using (kX)∗ ∼= kX. Note that this implies that

kX ⊗ kX ∼= (∆(X)∗ ⊗ kX)⊕ kX.

On the other hand, starting from our original exact sequence, if we tensor with ∆(X)∗

we obtain
0→ End(∆(X))→ kX ⊗∆(X)∗ → ∆(X)∗ → 0.

As an X-split exact sequence clearly remains X-split after tensoring with a kG-module,
this second sequence isX-split. Finally, noting that both kX and kX⊗∆(X)∗ are relatively
X-projective by definition, the Relative Schanuel’s Lemma gives

End(∆(X))⊕ kX ∼= k ⊕ (kX ⊗∆(X)∗).

Adding kX to both sides, the isomorphism kX ⊗ kX ∼= (kX ⊗∆(X)∗)⊕ kX noted above
yields

End(∆(X))⊕ kX ⊕ kX ∼= k ⊕ (kX ⊗ kX),

from which the desired isomorphism is obtained using kX ⊗ kX ∼= k[X ×X]. �

We can now prove the first main result of this section.

Proposition 5.5. Let X be a finite G-set such that XS = ∅. Then ∆(X) is a capped
Dade kG-module.

Proof. By Lemma 5.4, there is an isomorphism of kG-modules

End(∆(X))⊕ kX ⊕ kX ∼= k ⊕ k[X ×X].

This shows that End(∆(X)) is a summand of a permutation module, and hence it is an p-
permutation module by Definition 2.1. Note that since XS = ∅, the product X×X has no
S-fixed-points. This gives that the right hand side of the above isomorphism has a unique
Sylow-vertex component, namely the trivial module k. Since kX has no Sylow-vertex
components, it follows that k must be a summand of End(∆(X)) and that End(∆(X))
has no other Sylow-vertex components. As this is precisely the definition of a capped Dade
module, the result is proved. �

The condition that XS = ∅ is essential for the conclusion of Proposition 5.5.

Example 5.6. Suppose that SCG, so that G/S is a nontrivial p′-group. Assume moreover
that G/S is abelian. As before, let X(G) denote the group of 1-dimensional characters
χ : G→ k×. It is easy to see that

k[G/S] ∼=
⊕

χ∈X(G)

χ, so ∆(G/S) ∼=
⊕

16=χ∈X(G)

χ,

where 1 denotes the trivial character. It follows that

End(∆(G/S)) ∼=
⊕

χ,ψ∈X(G)
χ 6=16=ψ

χ∗ ⊗ ψ.

In particular, so long as |G/S| > 2, at least one of these terms is a 1-dimensional (hence
Sylow-vertex) nontrivial kG-module, so ∆(G/S) is not a Dade module.
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Definition 5.7. If X is a finite G-set such that XS = ∅, then we write ΩX for the class
[∆(X)] ∈ D(G). The group of relative syzygies of G is the subgroup DΩ(G) ≤ D(G)
generated by the set {ΩX} as X runs over all G-sets satisfying XS = ∅.

As noted above, allowing only the relative syzygies ∆(X) with XS = ∅ as generators
for DΩ(G) is a necessary condition, however this makes it difficult to capture the elements
in Υ(G) (cf. Theorem 4.8) as elements in DΩ(G). For example, when the order of G
is coprime to p, then by definition DΩ(G) = 0 even though there may be many one-
dimensional representations giving nonzero elements of Υ(G). However it is still possible
to produce some elements in Υ(G) using relative syzygies with the condition XS = ∅, as
shown in the following example, so in general Υ(G) ∩DΩ(G) 6= 0.

Example 5.8. Consider the group G = Σ3 at the prime p = 3. We have G = 〈σ :=
(123), τ := (12)〉, so that any kG-module is determined by a pair of compatible actions of
σ and τ . Write S := 〈σ〉 ∼= C3 and H := 〈τ〉 ∼= C2.

We consider the kG-module M := ∆(G/H) = ker(k[G/H]
ε−→ k). With respect to the

basis {x := σH −H, y := σ2H −H} for ∆(G/H), the generators of G act as

σ  

[
−1 −1

1 0

]
and τ  

[
0 1
1 0

]
.

We are interested in computing the element 2[M ] = [M ⊗M ] in D(G). With respect to
the basis

{α := x⊗ x, β := x⊗ y, γ := y ⊗ x, δ := y ⊗ y},
the action of G on M ⊗M is given by the matrices

σ  


1 1 1 1
−1 0 −1 0
−1 −1 0 0

1 0 0 0

 and τ  


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
If we now change our basis to the ordered basis {v1, v2, v3, v4}, where

v1 := β − γ, v2 := α− β − γ + δ, v3 := δ, and v4 := α,

then the matrices with respect to this new basis are

σ  


1

0 0 1
1 0 0
0 1 0

 and τ  


−1

1 0 0
0 0 1
0 1 0

 ,
hence we conclude that M⊗M ∼= 〈v1〉⊕〈v2, v3, v3〉. The one-dimensional summand 〈v1〉 is
the sign representation k(−1) of G = Σ3, and the 3-dimensional summand is isomorphic
to the permutation module k[G/H]. It follows that 2 · [M ] = [k(−1)] ∈ D(G), or that [M ]
has order 4 in the Dade group of Σ3. The computation 2 · [M ] = k(−1) shows that the
group ΥΩ(G) := Υ(G) ∩DΩ(G) is not trivial when G = Σ3.

By Theorem 4.8, the Dade group D(G) is finitely generated, hence DΩ(G) is also finitely
generated. As there are infinitely many G-sets X satisfying XS = ∅, there must be many
relations among the relative syzygies {ΩX}. In particular the assignment X → ΩX is not
a one-to-one correspondence.

In the rest of the section we prove a sequence of lemmas, each of which is designed
to impose relations on the generating set {ΩX}. At the end of the section we use these
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relations to prove that DΩ(G) has an explicit finite generating set, namely those ΩG/P

where P is a non-Sylow p-subgroup of G (Proposition 5.14).

Lemma 5.9. Let X and Y be G-sets such that XS = Y S = ∅. If for every p-subgroup
P ≤ G, the fixed-point set XP 6= ∅ precisely when Y P 6= ∅, then ΩX = ΩY in D(G).

Proof. The argument given in [6, Lem. 3.2.7] also applies here. The condition implies that
there exist S-maps f : X → Y and f ′ : Y → X. Note that a sequence of kG-modules
splits if and only if its restriction splits as a sequence of kS-modules, since a splitting of
kS-modules can be averaged to get a splitting of kG-modules. This implies that a sequence
of kG-modules is kX-split if and only if its restriction of S is k[ResGS X]-split.

Consider the sequence
0→ ∆(Y )→ kY → k → 0. (5.1)

This sequence is Y -split, hence its restriction to S is k[ResGS Y ]-split. Since there is a S-
map f : X → Y , by [6, Cor. 2.1.5] the restricted kS-module sequence is also ResGS X-split.
This gives that the sequence in (5.1) is also X-split

By definition kY is Y -projective, so k[ResGS Y ] is ResGS Y -projective as a kS-module.
Since there is an S-map f ′ : Y → X, by [6, Cor. 2.2.4] we can conclude that k[ResGS Y ]
is also ResGS X-projective. This implies that kY is also X-projective, as one can easily see
using part (iii) of Definition 5.2.

We have shown that the sequence in (5.1) is X-split with X-projective middle term.
Note that the sequence

0→ ∆(X)→ kX → k → 0

is also X-split and the middle term kX is X-projective. Applying the Relative Schanuel’s
Lemma to these two sequences, we obtain

∆(X)⊕ kY ∼= ∆(Y )⊕ kX.
Since XS = Y S = ∅, both ∆(X) and ∆(Y ) are capped Dade kG-modules. From the
isomorphism above and by the uniqueness of caps proved in Proposition 3.4, we obtain

ΩX = [∆(X)] = [Cap(∆(X))] = [Cap(∆(Y ))] = [∆(X)] = ΩY ,

and the result is proved. �

The following result is an immediate consequence of Lemma 5.9.

Corollary 5.10. Let X be a G-set with isotropy in FG. If there is a decomposition X =
X0 qX1 such that there is an S-map X0 → X1, then ΩX = ΩX1.

This shows that we may delete any G-orbit that maps into a distinct orbit without
affecting the resulting element in the group of relative syzygies. Another consequence of
Lemma 5.9 is the following.

Corollary 5.11. Let X be a finite G-set such that XS 6= ∅, and let Y be the G-set obtained
by replacing each orbit [G/H] of X by [G/T ] for some T ∈ Sylp(H). Then ΩX = ΩY in
D(G). In particular, if H ≤ G is a subgroup with T ∈ Sylp(H) such that T /∈ Sylp(G),
then ΩG/H = ΩG/T in D(G).

Corollary 5.11 allows us to restrict our attention to p-subgroup isotropy G-sets when
considering the generators {ΩX}. These two corollaries are used in the proof of Proposition
5.14 to give a generating set for DΩ(G).
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The following is the analogue of [6, Lem. 3.2.8]. A similar result for strongly capped
endo-p-permutation modules was also proven by Lassueur (see [24, Lemma 5.7]).

Lemma 5.12. Let X be a G-set such that XS = ∅, and let 0→ L→ kX → N → 0 be an
X-split short exact sequence of kG-modules. Then L is a capped Dade module if and only
if N is a capped Dade module, in which case [L] = ΩX + [N ] in D(G).

Proof. Tensoring the short exact sequence with L∗ yields

0→ L⊗ L∗ → kX ⊗ L∗ → N ⊗ L∗ → 0,

while first dualizing and then tensoring with N yields

0→ N∗ ⊗N → kX ⊗N → L∗ ⊗N → 0.

Both of these sequences are X-split and have X-projective middle term, so we may apply
the Relative Schanuel’s Lemma to obtain

End(L)⊕ (kX ⊗N) ∼= End(N)⊕ (kX ⊗ L∗).

The dual of the original sequence 0 → N∗ → kX → L∗ → 0 is X-split, which gives
End(kX) ∼= kX ⊗ kX ∼= (kX ⊗N∗)⊕ (kX ⊗ L∗). Thus adding kX ⊗N∗ to both sides of
the above isomorphism yields

End(L)⊕ (kX ⊗N)⊕ (kX ⊗N∗) ∼= End(N)⊕ End(kX).

If N is a Dade module, then End(N) is p-permutation module, so our observation
that End(L) | (End(N) ⊕ End(kX)) shows that End(L) is also a p-permutation module.
Moreover, as XS = ∅, every component of End(kX) ∼= (kX)∗ ⊗ kX ∼= k[X × X] has a
non-Sylow vertex, so the only Sylow-vertex components of the right hand side are those of
End(N), which must be trivial as N is a Dade module. It follows that the only Sylow-vertex
components of End(L) must be trivial as well, so L is a Dade module.

If N is a capped Dade module, then k is a component of End(N). Note that k cannot
be a component of either kX ⊗N∗ or kX ⊗N since these modules have components with
non-Sylow vertices. This implies that k is a summand of End(L), and hence L must also
be capped. The other direction of the statement can be proved in a similar way.

Assume now that both L and N are capped Dade kG-modules. The exact sequence

0→ ∆(X)→ kX → k → 0

is X-split, and it remains X-split after tensoring with N , so we may apply the Relative
Schanuel’s Lemma to the sequences

0 // L // kX // N // 0

0 // ∆(X)⊗N // kX ⊗N // N // 0

to obtain

L⊕ (kX ⊗N) ∼= kX ⊕ (∆(X)⊗N).

Again, all components of kX, and hence kX ⊗N , have non-Sylow vertices, so Cap(L) =
Cap(∆(X)⊗N), proving the last statement. �

Continuing to follow Bouc (cf. [6, Lem. 5.2.1]), we have the following:
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Lemma 5.13. If X and Y are G-sets such that XS = Y S = ∅, then

ΩXqY + ΩX×Y = ΩX + ΩY

in D(G).

Proof. In light of Lemma 5.12, it suffices to find an exact sequence

0→ ∆(X)⊗∆(Y )→ k[X × Y ]→ ∆(X q Y )→ 0

that is k(X × Y )-split. If we take the tensor product of the short exact sequences

0 // ∆(X) // kX // k // 0 (5.2)

and
0 // ∆(Y ) // kY // k // 0, (5.3)

then we obtain the long exact sequence

0→ ∆(X)⊗∆(Y )→ kX ⊗ kY → kX ⊕ kY → k → 0. (5.4)

We claim that this long exact sequence is X × Y -split, meaning that it becomes a split
sequence (as a long exact sequence) after it is tensored with k[X × Y ]. To see this, note
that the short exact sequences (5.2) and (5.3) are X-split and Y -split, respectively, so
their tensor product becomes a split exact sequence after we tensor with kX ⊗ kY . This
gives that the long exact sequence (5.4) is X × Y -split since k[X × Y ] ∼= kX ⊗ kY .

Note that kX⊕kY ∼= k[XqY ], hence the kernel of the map kX⊕kY → k is isomorphic
to ∆(X q Y ). Using the exactness of the sequence (5.4), we conclude that

0→ ∆(X)⊗∆(Y )→ kX ⊗ kY → ∆(X q Y )→ 0

is exact. This gives the desired short exact sequence. �

We are now ready to give a finite set of generators for DΩ(G). A similar theorem was
proved by Lassueur [24, Lem. 12.1]. Since we define DΩ(G) using G-sets, the statements
are slightly different, although the idea of the proof is the same.

Proposition 5.14. Let FG denote the family of all non-Sylow p-subgroups of G and let
FG/G denote the set of G-conjugacy classes in FG. Then the set {ΩG/P | [P ] ∈ FG/G}
generates DΩ(G).

Proof. By Corollary 5.11, we may assume that each point-stabilizer of X is a non-Sylow
p-subgroup of G. If |S| = pn, we filter DΩ(G) by

0 := DΩ(G)−1 ≤ DΩ(G)0 ≤ DΩ(G)1 ≤ . . . ≤ DΩ(G)n−1 = DΩ(G),

where for 0 ≤ i ≤ n− 1 we define DΩ(G)i to be the subgroup generated by those relative
syzygies ΩX for X a G-set whose every point-stabilizer is a p-subgroup of order at most
pi. We will prove inductively that each DΩ(G)i is generated by elements of the form ΩG/P

with P ∈ FG.

To begin, the generating set for DΩ(G)0 is those relative syzygies ΩX where X ∼=
m · [G/1] is a free G-set. Corollary 5.10 then gives X = ΩG/1. Thus we have established
the base case.

Suppose that we have established the result for k − 1. Let

X =
m∐
i=1

G/Pi
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be such that for each i, the p-subgroup of Pi is of order at most pk. By Corollary 5.10,
we may assume that there are no S-maps from G/Pi to G/Pj for i 6= j, as deleting the
orbit G/Pi does not affect the resulting relative syzygy in DΩ(G). We now induct on m,
the base case m = 1 being the desired conclusion.

Write X = (G/P1)qX ′ where X ′ =
m∐
i=2

G/Pi. Lemma 5.13 gives us

ΩX = Ω[(G/P1)qX′] = ΩG/P1
+ ΩX′ − Ω[(G/P1)×X′].

By the second induction (on m), we have that ΩX′ is a sum of {ΩG/Qj
} for some p-

subgroups Qj . It therefore suffices to show that Ω[(G/P1)×X′] can also be expressed as a
sum of ΩG/Qj

for some p-subgroups Qj .

Consider the point-stabilizer of an element in (G/P1)×X ′, which is the intersection of
the point-stabilizers of the two component elements. In other words, the point-stabilizer of
(gP1, x

′) is gP1 ∩Gx′ . From our assumption that there are no S-maps from G/Pi to G/Pj
when i 6= j, we must have that P1 is not G-subconjugate to any of the point-stabilizers of
X ′. Therefore the point-stabilizers of (G/P1)×X ′ are all properly contained in conjugates
of P1, and thus have order at most pk−1. This gives that Ω[(G/P1)×X′] ∈ DΩ(G)k−1, and
our inductive assumption on k completes the proof. �

6. Superclass functions and the Bouc homomorphism

Let G be a finite group. A set of subgroups of G is called a family if it is closed under
G-conjugation and taking subgroups. We denote an arbitrary family of subgroups by H.
As before, FG denotes the family of all non-Sylow p-subgroups of G, and Fp denotes the
family of all p-subgroups of G.

Definition 6.1. A superclass function of G defined on a family H is a function f : H → Z
that is constant on each G-conjugacy class. We write C(G,H) for the set of superclass
functions defined on H. Note that C(G,H) is an abelian group under pointwise addition.

Remark 6.2. For every family H of subgroups of G, the relative Burnside ring B(G,H)
is defined as the subring of the Burnside ring generated by those G-sets whose point-
stabilizers lie in H. The group of superclass functions C(G,H) can be identified with the
Z-dual of the relative Burnside ring B∨(G,H) := Hom(B(G,H),Z) by the assignment

B∨(G,H)→ C(G,H) : f 7→ (H 7→ f(G/H))

for all H ∈ H. We sometimes use this identification without referring to it explicitly.

Let H/G denote the set of G-conjugacy classes of subgroups in H. There is a canonical
Z-basis {δ[H] | [H] ∈ H/G} for C(G,H), whose elements are defined by

δ[H](K) =

{
1 if [K] = [H]

0 if [K] 6= [H]

for all K ∈ H.

For every G-set X, let ωX ∈ C(G,H) denote the superclass function defined by

ωX(K) =

{
1 if XK 6= ∅
0 if XK = ∅

for all K ∈ H. We have the following observation due to Bouc [8, Lemma 2.2].
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Lemma 6.3. Let H be any family of subgroups in G. Then the set {ωG/H | [H] ∈ H/G}
is a Z-basis for C(G,H).

Proof. For each H ∈ H, we can write

ωG/H =
∑

[K]≤[H]

δ[K],

where the partial order is induced by G-subconjugacy. By totally ordering H/G appro-
priately, it is easy to see that the matrix for the linear transformation that takes {δ[K]}
to {ωG/H} can be made an upper triangular matrix with integral entries and all diagonal
terms equal to 1. The inverse matrix must therefore be an integer matrix of the same form,
and the result follows. �

It is easy to see that the superclass functions {ωX}, as X ranges over all G-sets, satisfy
the following relations:

Lemma 6.4. Let X and Y be G-sets. If for every subgroup H ∈ H, the fixed point set
XH 6= ∅ precisely when Y H 6= ∅, then ωX = ωY in C(G,H).

Proof. Immediate from the definitions of ωX and ωY . �

We also have a relation coming from a product of two G-sets.

Lemma 6.5. If X and Y are two G-sets, then

ωXqY + ωX×Y = ωX + ωY

in C(G,H).

Proof. Fix some subgroup H ∈ H. There are three cases to consider: both X and Y have
an H-fixed-point, exactly one has a H-fixed-point, and neither has a H-fixed-point. Since
(X × Y )H = XH × Y H and (X q Y )H = XH q Y H , these cases correspond respectively
to: both X×Y and X qY have an H-fixed-point, X×Y has no H-fixed-point but X qY
does, and neither X×Y nor XqY has an H-fixed-point. The result is now immediate. �

Note that the conclusions of Lemmas 6.4 and 6.5 are the direct analogues of Lemmas
5.9 and 5.13, with ωX in place of ΩX . As before (cf. Corollaries 5.10 and 5.11), Lemma
6.4 has the following consequences:

Corollary 6.6. Let H be a family of p-subgroups of G and X a finite G-set.

(i) If there is a decomposition X ∼= X0 qX1 such that there is an S-map X0 → X1,
then ωX = ωX1 in C(G,H).

(ii) If Y is formed from X by replacing each orbit [G/H] by [G/T ] for T ∈ Sylp(H),
then ωX = ωY in C(G,H). In particular, for any H ∈ H and T ∈ Sylp(H), we
have ωG/H = ωG/T in C(G,H).

The assignment ωG/P 7→ ΩG/P induces the group homomorphism

ΨG : C(G,FG)→ DΩ(G).

As {ωG/P | [P ] ∈ Fp/G} forms a free Z-basis for C(G,Fp), this rule gives a well-defined

map, and since {ΩG/P | [P ] ∈ FG/G} forms a (nonfree) generating set of DΩ(G) by
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Proposition 5.14, ΨG is a surjection. To extend this homomorphism to C(G, p) we declare
ΩG/S = 0 and define

ΨG : C(G, p)→ DΩ(G)

to be the homomorphism that sends ωG/P to ΩG/P for every [P ] ∈ Fp/G. This homomor-
phism is still well-defined and surjective. Since ΨG is a generalization of the homomorphism
defined for p-groups by Bouc in [8, Theorem 1.7], we refer to it as the Bouc homomorphism.

The declaration of ΩG/S = 0 suggests that we can extend the definition of ΩX to
arbitrary G-sets X as follows:

Definition 6.7. For any G-set X, set

ΩX =

{
[∆(X)] if XS = ∅,
0 if XS 6= ∅.

Note that this definition is consistent with the convention that is used when G = S
is a p-group. In this earlier situation, when |XS | > 1 we have ∆(X) is a capped endo-
permutation module with cap k, so we have ΩX = [∆(X)] = 0 in D(X) by definition.
However if |XS | = 1 then ∆(X) is not a capped endo-permutation module. In this case
ΩX was taken to be trivial by convention.

In the general finite group situation, if XS 6= ∅ then ∆(X) may contain non-isomorphic
Sylow-vertex summands, and hence it may not be a Dade module. Our choice of setting
ΩX = 0 in DΩ(G) when XS 6= ∅ is therefore not only consistent with the p-group situation,
it is the only reasonable generic option available.

Remark 6.8. In the non-p-group case one should be careful when using this convention, as
it is sometimes possible that ∆(X) may be a Dade module with [∆(X)] 6= 0 even though
XS 6= ∅. In this case we still have ΩX = 0. For example, when G = C2 and p 6= 2 we have
∆(G/1) ∼= k(−1) and [k(−1)] 6= 0 in D(G), however we still take ΩG/1 = 0. In fact, for

this group we have Dk(C2) ∼= Z/2 but DΩ
k (C2) = 0 when k is a field of odd characteristic.

With this convention we have the following theorem.

Proposition 6.9. The Bouc homomorphism

ΨG : C(G, p)→ DΩ(G)

sends ωX to ΩX for every G-set X.

Proof. If X is a G-set such that XS 6= ∅, then ωX : Fp → Z is the constant superclass
function with value 1. In particular, we have ωX = ωG/S . Then ΨG(ωX) = ΨG(ωG/S) = 0.
Since in this case by definition ΩX = 0, we have obtained the desired conclusion ΨG(ωX) =
ΩX .

Now assume that XS = ∅. By Corollaries 5.11 and 6.6(ii), we may take the point-
stabilizers of X to be p-subgroups. As in the proof of Proposition 5.14, we induct on the
maximum order of the point-stabilizers of X. In the case where this order is 1, we must
have that X is a free G-set, so X = m · [G/1]. We then have ΩX = ΩG/1 and ωX = ωG/1 by
Corollaries 5.10 and 6.6(i), respectively, so it follows that ΨG(ωX) = ΩX by the definition
of ΨG. We have established our base case.

Suppose now that the result holds for all G-sets with point-stabilizers p-groups of order
less than pk. Among all G-sets having a point-stabilizer of order pk, we induct on the
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number of orbits m, the case m = 1 being a transitive G-set and therefore covered by the
definition of ΨG.

Now let X be such a G-set with m orbits and assume the result has been proved for
all values less than m. If there are G-orbits [G/P ] and [G/Q] in X such that P is G-
subconjugate to Q, and if X ′ is X with one copy of [G/P ] deleted, Corollaries 5.10 and
6.6(i) give ΩX = ΩX′ and ωX = ωX′ , respectively, in which case the result is proved by
the inductive hypothesis on m. We may therefore assume that no two orbits of X have
point-stabilizers that are comparable by the G-subconjugacy relation.

Finally, we may write X = [G/P ]qX ′ where |P | = pk and X ′ has m− 1 orbits, each of
which has point-stabilizers of order at most pk and is not G-subconjugate to P . Writing

ΩX = ΩG/P + ΩX′ − Ω[(G/P )×X′] and ωX = ωG/P + ωX′ − ω[(G/P )×X′]

by Lemmas 5.13 and 6.5, we note that we already have ΨG(ωG/P ) = ΩG/P by definition
and ΨG(ωX′) = Ω′X by our induction on m. On the other hand, the assumption that no
point-stabilizer ofX ′ isG-subconjugate to P implies that all point-stabilizers of (G/P )×X ′
are of order at most pk−1, so we also have ΨG(ω[(G/P )×X′]) = Ω[(G/P )×X′] by the induction
assumption. As ΨG is linear, we have proved ΨG(ωX) = ΩX , thereby completing the
induction and the proof. �

Note that Proposition 6.9 completes the proof of Theorem 1.4.

One of the consequences of the existence of the Bouc homomorphism is that any equation
that hold for ωX also holds for ΩX . Using this, we can conclude the following:

Corollary 6.10. Let G be a finite group and X be a G-set. Then

ΩX =
∑

[Q],[P ]∈Fp/G,

Q≤GP, X
P 6=∅

µG(Q,P )ΩG/Q

in DΩ(G), where µG denotes the Möbius function of the poset of G-conjugacy classes of
p-subgroups in G.

Proof. Repeating the arguments given in [8, 2.3, 2.6], one can easily see that the above
formula holds for ωX , and hence it also holds for ΩX . �

7. Moore G-spaces with non-Sylow p-subgroup isotropy

In this section we consider Moore G-spaces. We show that if all the point-stabilizers
of a Moore G-space X are non-Sylow p-subgroups of G, then the top reduced homology
group of X with coefficients in k is a Dade kG-module (Theorem 7.10). This result will be
extended in the next section to all Moore G-spaces, with minor modifications. All this is
ultimately aimed at showing that the dimension function of a k-oriented real representation
sphere is in the kernel of the Bouc homomorphism.

Let G be a finite group and H a family of subgroups of G (closed under conjugation and
taking subgroups). The orbit category of G with respect to the family H is the category
OH(G) whose objects are the transitive G-sets {G/H | H ∈ H} and whose morphisms
from G/H to G/K are given by the G-maps G/H → G/K. When the group G is clear
from the context, we will write OH for OH(G).

Let R be a commutative ring with unity. An ROH-module M is a contravariant functor
from the category OH to the category of R-modules. The value of an ROH-module M at
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G/H is written M(H). By identifying AutOH(G/H) with NG(H) := NG(H)/H, we view

the R-module M(H) as an RNG(H)-module. In particular, M(1) is an RG-module. Note
that for every H ∈ H, the subgroup H acts trivially on M(H). For more information on
modules over orbit categories, we refer the reader to [25, §9, §17] and [20].

Definition 7.1. For a G-set X, the ROH-module R[X?] is defined by the rule

G/H 7→ R[XH ] ∼= RHomG(G/H,X),

where XH denotes the NG(H)-set of H-fixed points.

An ROH-module is called free if it is isomorphic to a direct sum of modules of the form
R[(G/K)?] with K ∈ H. By the Yoneda Lemma, every free ROH-module is projective
(see [20, Section 2A]).

More generally, given a G-CW-complex X, we can associate to it a chain complex of
ROH-modules.

Definition 7.2. Let X be a finite G-CW-complex. For each i ≥ 0, consider the ROH-
module

Ci(X
?;R) : G/H 7→ Ci(X

H ;R),

where Ci(X
H ;R) denotes the free R-module whose basis is the set of i-dimensional cells

in the H-fixed subspace XH . These ROH-modules are connected by the CW-boundary
maps to yield a chain complex of ROH-modules

C∗(X
?, R) : · · · → Ci(X

?;R)
∂i−→Ci−1(X?;R)→ · · · → C0(X?;R)→ 0.

Note that for each H ∈ H, the complex C∗(X
H ;R) is the chain complex of the subspace

XH . This gives an interpretation of C∗(X
?;R) as a functor from the category OH to the

category of chain complexes over R.

For each i ≥ 0, Ci(X;R) ∼= R[X?
i ] where Xi denotes the G-set of all i-dimensional cells

in X. From this it is easy to see that the chain complex of a G-CW-complex X is a chain
complex of free ROH-modules if all point-stabilizers of X lie in H.

Let R denote the constant functor with values R(H) = R for every H ∈ H. For each
G-map f : G/K → G/H the induced map f∗ : R(H)→ R(K) is taken to be the identity
map id : R → R. For every free ROH-module R[X?] there is an augmentation map
ε : R[X?]→ R, defined object-wise by the augmentation map R[XH ]→ R.

If C∗(X
?;R) is a chain complex of free ROH-modules, then there is an augmentation

map C0(X?;R)→ R. Appending this map to the chain complex C∗(X
?;R) gives the aug-

mented complex C̃∗(X
?;R) whose i-th homology is an ROH-module. This ROH-module

will be written H̃i(X
?;R), and is called the i-th reduced homology module of X.

Recall that a G-CW-complex is called finite if it has finitely many cells.

Definition 7.3. A Moore G-space over R, relative to the family H, is a finite G-CW-

complex X such that for every H ∈ H there is exactly one i ≥ 0 such that H̃i(X
H ;R) 6= 0.

If X is a Moore G-space then there is a superclass function n : H → Z such that H̃i(X
H ;R)

vanishes for all i 6= n(H). We sometimes record these data by referring to X as an n-Moore
G-space.

In our applications, we often need the homological dimension of the fixed point subspace
XH to coincide with its geometric dimension as a CW -complex, denoted by dim(XH).
We define the following condition for Moore G-spaces to guarantee this.
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Definition 7.4. The n-Moore G-space X is tight if n(H) = dim(XH) for all H ∈ H.

We have many examples of tight Moore G-spaces.

Example 7.5. Let V be a real G-representation and X := S(V ) the unit sphere in V with
respect to some G-equivariant norm. The G-space X is a smooth G-manifold, which can
be triangulated to obtain a G-CW-complex. In this case XH = S(V H) is a sphere for every

H ≤ G, hence H̃i(X
H ;R) = 0 when i 6= dimXH . Thus X is a tight n-Moore G-space over

R where n(H) = dimR(V H)− 1.

Example 7.6. Let X be a finite G-set, considered as a zero dimensional G-CW-complex.

The augmented complex C̃∗(X
?;R) is of the form

0→ R[X?]
ε−→R→ 0

where ε is the augmentation map. If XH = ∅, then H̃i(X
H ;R) ∼= R for i = −1 and

vanishes in all other dimensions. If XH 6= ∅, then we have a short exact sequence

0→ ∆(XH)→ k[XH ]→ R→ 0,

so the reduced homology of XH is concentrated in dimension 0 and H̃0(XH ;R) ∼= ∆(XH)
as an RNG(H)-module. We conclude that X is a tight n-Moore G-space over R, where
n = ωX − 1.

Definition 7.7. The dimension function of an n-Moore space X is the superclass function
Dim(X) : H → Z defined by Dim(X)(H) = n(H) + 1.

For every finite G-set X, the superclass function ωX is realized as the dimension function
of the discrete G-space X. To realize sums of multiple such ωX , one can use the join
construction for G-Moore spaces.

Given two G-CW-complexes X and Y , the join X ∗ Y is defined as the quotient space
X × Y × [0, 1]/ ∼ with the identifications (x, y, 1) ∼ (x′, y, 1) and (x, y, 0) ∼ (x, y′, 0) for
all x, x′ ∈ X and y, y′ ∈ Y . The G-action on X ∗ Y is given by g(x, y, t) = (gx, gy, t) for
all x ∈ X, y ∈ Y , and t ∈ [0, 1]. The join X ∗ Y has a natural G-CW-complex structure,
once we assume that the topology on the product is the compactly generated topology
(see [31, Section 4] for more details).

Lemma 7.8. If X and Y are Moore G-spaces, then X ∗ Y is a Moore G-space with
dimension function Dim(X ∗ Y ) = Dim(X) + Dim(Y ). Moreover if X and Y are tight
Moore G-spaces, then X ∗ Y is also tight.

Proof. We have (X ∗Y )H = XH ∗Y H for every H ≤ G. Since the join of two Moore spaces
is a Moore space the result follows. �

As a consequence we obtain:

Proposition 7.9. Let X be the join of a finite set of finite G-sets {Xi}. Then X is
a tight Moore G-space and Dim(X) =

∑
i ωXi. In particular, every superclass function

f =
∑
aP · ωG/P with aP ≥ 0 can be realized as the dimension function of a tight Moore

G-space.

Proof. We can define a G-simplicial complex structure on X using the following: Define a
relation on qiXi by declaring x ≤ y if x ∈ Xi and y ∈ Xj for some i < j. The topological
realization of this poset is a G-simplicial complex which is homeomorphic to the join ∗iXi.
It is clear that the dimension function of X is the function

∑
i ωXi . �
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For a Moore G-space X constructed as the join of G-sets {Xi}, the augmented simplicial

chain complex C̃∗(X
?;R) is the tensor product of chain complexes

0→ R[X?
i ]→ R→ 0.

Hence the homology of the complex C̃∗(X;R) is isomorphic to the tensor product
⊗

i ∆(Xi)
as an RG-module. If all isotropy subgroups of the G-sets Xi are non-Sylow p-subgroups
and R = k is a field of characteristic p > 0, then by Proposition 5.5, each ∆(Xi) is a
capped Dade module, hence in this case the reduced homology of X is a Dade kG-module
whose class in the Dade group is the sum

∑
i ΩXi .

This observation generalizes to all MooreG-spaces satisfying the same isotropy subgroup
condition.

Theorem 7.10. Let G be a finite group and k be a field of characteristic p > 0. Suppose
that X is an n-dimensional tight Moore G-space over k such that all the point-stabilizers of
X are non-Sylow p-subgroups. Let Xi denote the G-set of i-dimensional cells of X. Then

H̃n(X, k) is a capped Dade kG-module, and

[H̃n(X; k)] =

n∑
i=1

ΩXi

in DΩ(G).

Proof. We follow the argument given in [31] with some modifications. Let H = FG be the
family of all non-Sylow p-subgroups in G. Let n : H → Z be a superclass function and X

be an n-Moore G-space with isotropy in H. The augmented chain complex C̃∗(X
?; k) is a

chain complex of free kOH-modules of the form

0→ k[X?
n]

∂n−→ · · · −→ k[X?
i ]

∂i−→ k[X?
i−1]−→ · · · −→ k[X?

0 ]
∂0−→ k → 0.

The evaluation of this sequence at the trivial subgroup Q = 1 gives an exact sequence of
kG-modules

0→ H̃n(X; k)→ k[Xn]
∂n−→ · · · −→ k[Xi]

∂i−→ k[Xi−1]−→ · · · −→ k[X0]
∂0−→ k → 0.

If we show that for each i ≥ 0, the short exact sequence

0→ ker ∂i → k[Xi]→ im ∂i → 0 (7.1)

is Xi-split then the conclusion will follow from repeated applications of Lemma 5.12. To
show that the sequence in (7.1) is Xi-split, we consider the chain complex of ROH-modules

D := 0→ k[X?
i ]⊗ k[X?

i ]
∂i⊗id−−−→ k[X?

i−1]⊗ k[X?
i ]→ · · · → k[X?

0 ]⊗ k[X?
i ]→ k[X?

i ]→ 0

obtained by first tensoring the augmented complex C̃∗(X
?; k) with the free module k[X?

i ]
and then truncating at dimension i. Note that for each j ≥ 0, the kOH-module

Dj = k[X?
j ]⊗ k[X?

i ] ∼= k[(Xj ×Xi)
?]

is free, hence D is a chain complex of projective kOH-modules.

We claim that D has no homology in dimensions strictly less than i. For each Q ∈ H
such that XQ

i = ∅, the complex D(Q) is identically zero. If Q ∈ H is such that XQ
i 6= ∅,

then n(Q) = dimXQ ≥ i by the tightness of X. This implies that H̃j(X
Q;R) = 0 for all

j < i, meaning that the chain complex

0→ k[XQ
i ]

∂i−→ k[XQ
i−1]→ · · · → k[XQ

0 ]→ k → 0
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has no homology in dimensions j < i. Since tensoring an exact chain complex with k[XQ
i ]

over k does not change the exactness of a sequence, we conclude that

Hj(D)(Q) = Hj(D(Q)) = 0

for all j < i and Q ∈ H. Hence the kOH-module Hj(D) vanishes for all j < i.

To complete the proof, observe that the condition Hj(D) = 0 for j < i implies that
im(∂i ⊗ id) is a projective kOH-module. Hence the short exact sequence

0→ ker(∂i ⊗ id)→ k[X?
i ]⊗ k[X?

i ]→ im(∂i ⊗ id)→ 0

splits as an exact sequence of kOH-modules. This implies that the sequence

0→ ker(∂i)⊗ k[Xi]→ k[Xi]⊗ k[Xi]→ im(∂i)⊗ k[Xi]→ 0

splits as a sequence of kG-modules. Hence for each i, the sequence

0→ ker ∂i → k[Xi]→ im(∂i)→ 0

is Xi-split. This completes the proof. �

A G-CW-complex is called full if for every H ≤ G, we have Ci(X
H) 6= 0 whenever

i ≤ dim(XH). This property always holds when X is a G-simplicial complex. By the
equivariant simplicial approximation theorem, every G-CW-complex X is G-homotopy
equivalent to a G-simplicial complex, and hence G-homotopy equivalent to a full G-CW-
complex Y . Recall that two G-spaces X,Y are G-homotopy equivalent if there are G-maps
f : X → Y and f ′ : Y → X such that the compositions f ′ ◦ f and f ◦ f ′ are G-homotopic
to the identity maps.

For a full complex we can prove the following.

Lemma 7.11. Let X be a tight Moore G-space of dimension n, relative to a family H.
Suppose that X is a full complex, and Xi denotes the G-set of i-dimensional cells of X.
Then

Dim(X) =

n∑
i=0

ωXi

in C(G,H).

Proof. Fix H ∈ H. The sum
∑

i ωXi(H) is the number of indices i such that XH
i 6= ∅.

Since XH
i 6= ∅ if and only if i satisfies 0 ≤ i ≤ dimXH , we obtain that

n∑
i=0

ωXi(H) = 1 + dim(XH) = Dim(X)(H).

�

We can define a group of Moore G-spaces for a finite group G, as was done in [31] for
p-groups.

Definition 7.12. The Moore G-spaces X and Y are equivalent, denoted X ∼ Y , if X
and Y are G-homotopy equivalent. The equivalence class of a Moore G-space X will be
written [X].
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It is easy to show that if X ∼ X ′ and Y ∼ Y ′, then X ∗ Y ∼ X ′ ∗ Y ′. Hence the
join operation defines an addition of the equivalence classes of Moore G-spaces given by
[X] + [Y ] = [X ∗ Y ]. Note that if the isotropy subgroups X and Y lie in H, then the
isotropy subgroups of X ∗Y also lie in H. The set of equivalence classes of Moore G-spaces
with isotropy in H with this addition operation is a commutative monoid, so we can apply
the Grothendieck construction to define the group of Moore G-spaces.

Definition 7.13. Let G be a finite group and k be a field of characteristic p > 0. The
group of tight Moore G-spaces Mt(G,H) is the Grothendieck group of G-homotopy classes
of tight Moore G-spaces with isotropy in H with addition defined by [X] + [Y ] := [X ∗Y ].

Note that since every G-CW-complex X is G-homotopy equivalent to a full G-CW-
complex we can define a homomorphism

Dim :Mt(G,H)→ C(G,H) : [X]− [Y ] 7→ Dim(X)−Dim(Y ).

We call this the dimension homomorphism. Note that the dimension homomorphism is
surjective since C(G,H) is generated by the {ωX}, and ωX is the dimension function of a
discrete G-space X, which is a tight Moore G-space.

As before let FG denote the family of all non-Sylow p-subgroups of G. By Theorem
7.10, if X is a tight Moore G-space relative to the family FG, then its reduced homology
is a Dade module. Using this, we can define an homomorphism

Hom :Mt(G,FG)→ DΩ(G) : [X]− [Y ] 7→ [H̃n(X; k)]− [H̃m(Y ; k)],

where n and m are the dimensions of X and Y . Note that if [X1]− [Y1] = [X2]− [Y2], then
there is a tight Moore G-space Z such that

X1 ∗ Y2 ∗ Z ∼= X2 ∗ Y1 ∗ Z.

Therefore we have Hom([X1])−Hom([Y1]) = Hom([X2])−Hom([Y2]) in DΩ(G). This shows
that Hom is a well-defined homomorphism.

Proposition 7.14. There is a factorization

Hom = ΨG ◦Dim

relating the Bouc homomorphism ΨG : C(G,FG) → DΩ(G) to the maps Dim and Hom
defined above.

Proof. Follows from Theorem 7.10 and Lemma 7.11. �

8. Capped Moore G-spaces

For our applications we also need to consider Moore G-spaces with arbitrary isotropy.
The unit spheres of real representations are important examples of Moore G-spaces and
in general they do not have p-subgroup isotropy. A real representation sphere may also
have nonempty S-fixed-points.

Throughout this section we will work with the family Fp of all p-subgroups of G. We
denote the orbit category over Fp by Op(G) to simplify the notation.

Definition 8.1. Let n : Fp → Z be a superclass function and X an n-Moore G-space over

k. Let m := n(S). We say X is a capped Moore space if the reduced homology H̃m(XS ; k),
considered as an NG(S)-module, has a trivial component k.
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Note that if X is a Moore G-space whose point-stabilizers are all non-Sylow p-subgroups,

then XS = ∅. In this case we have m = −1 and H̃m(XS ; k) ∼= k, so that X is a capped
Moore G-space.

The join of two capped Moore G-spaces is a capped Moore G-space, so the G-homotopy
classes of capped (tight) Moore G-spaces form an additive monoid under the operation
[X]+[Y ] := [X ∗Y ]. LetMt(G,Fp) denote the Grothendieck group of G-homotopy classes
of capped tight Moore G-spaces over the field k. Note that, while our definition of Moore
G-space allows for non-p-group isotropy, we only require that XH be a Moore space when
H is a p-group.

The dimension function of a capped Moore G-space can be defined as in Definition 7.7,
yielding the group homomorphism

Dim :Mt(G,Fp)→ C(G, p).

The composition of Dim with the Bouc homomorphism ΨG : C(G, p)→ DΩ(G) gives the
group homomorphism

Hom :Mt(G,Fp)→ DΩ(G).

The homology of a capped Moore space may not be a Dade kG-module, so it is not possible
to explain this new homomorphism using the assignment X 7→ [Hn(X?; k)] as in the
previous section. However it is still possible to give an interpretation of this homomorphism
in terms of the homology of a Moore G-space. For this we first prove a lemma, which can
be interpreted as a generalization of Lemma 5.12.

Lemma 8.2. Let X be a G-set such that XS = ∅, and let 0 → L → kX → N → 0 be
an X-split short exact sequence of kG-modules. If N is an endo-p-permutation module,
then L is as well. Moreover, if N has a capped Dade module summand N1, then L has a
summand L1, also a capped Dade module, that satisfies [L1] = ΩX + [N1] in D(G).

Proof. Repeating the argument in Lemma 5.12 we see that

End(L)⊕ (kX ⊗N)⊕ (kX ⊗N∗) ∼= End(N)⊕ End(kX).

As N is an endo-p-permutation module, End(L) is a p-permutation module, and thus L
is an endo-p-permutation module.

Assume now that N ∼= N1 ⊕N2 where N1 is a capped Dade kG-module. Applying the
Relative Schanuel’s Lemma to the sequences

0 // L // kX // N // 0

0 // ∆(X)⊗N // kX ⊗N // N // 0

we obtain

L⊕ (kX ⊗N) ∼= kX ⊕ (∆(X)⊗N).

Now ∆(X)⊗N1 is a capped Dade module that appears as a summand on the right hand
side, so the cap of ∆(X) ⊗N1 is isomorphic to a component on the left hand side. Since
all components of kX ⊗N have non-Sylow vertices, cap(∆(X)⊗N1) must be isomorphic
to a summand of L, say L1. Then L1 is a capped Dade module such that

[L1] = [∆(X)⊗N1] = ΩX + [N1],

completing the proof. �
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In the proof of the next proposition we make use of the Brauer quotient construction,
which we now recall. Given a kG-module M and a p-subgroup P ≤ G, we denote by MP

the submodule of P -fixed elements in M . For every Q ≤ P , we have the relative trace map
trPQ : MQ →MP defined by m 7→

∑
xQ∈P/Q x ·m. The quotient

M [P ] := MP /
∑
Q<P

trPQ(MQ)

is an NG(P )-module, called the Brauer quotient of M at P . The quotient map MP →
M [P ] will be written BrP . It is easy to see that the Brauer quotient of the permutation
module k[X] at P is isomorphic to k[XP ] as a k[NG(P )]-module (see [12, 1.1]).

Bouc [5] studied the connection between Brauer quotients and modules over the orbit
category Op(G). Let M be a kOp(G)-module. For every p-subgroup P ≤ G, there is a

restriction homomorphism ResP1 : M(P )→M(1), which commutes with the maps induced
byG-conjugation. Since P acts trivially onM(P ), this implies that ResP1 (M(P )) ⊆M(1)P ,
and thus we can compose with the quotient map BrP to obtain the homomorphism

BrResP : M(P )
ResP1−−−→M(1)P

BrP−−−→M(1)[P ].

We will need the following result due to Bouc.

Proposition 8.3 ([5], Proposition 6.5). A kOp(G)-module M has a finite projective reso-
lution if and only if M(1) is a p-permutation kG-module and the map BrResP : M(P )→
M(1)[P ] is an isomorphism of kNG(P )-modules for every p-subgroup P ≤ G.

Brauer quotients interact nicely with the Green correspondence: If M is an indecompos-
able p-permutation module with vertex P , then the Brauer quotient M [P ] is the indecom-
posable projective k[NG(P )]-module corresponding to M under the Green correspondence
(see [12, Theorem 3.2]).

We are now ready to state the main result of this section.

Theorem 8.4. Let n : Fp → Z be a superclass function and X an n-dimensional capped n-

Moore G-space. Assume also that X is full and tight. Then the reduced homology H̃n(X; k)
has a summand M that is a capped Dade G-module satisfying

[M ] = ΨG(Dim(X))

in DΩ(G).

Proof. Let m := n(S), and let

C̃∗(X
?; k) : 0→ k[X?

n]
∂n−→ k[X?

n−1]→ · · · → k[X?
m]

∂m−→ · · · → k[X?
0 ]→ k → 0

be the reduced chain complex of X over the orbit category Op(G). Note that this chain
complex may not be a chain complex of free kOp-modules since the isotropy subgroups of
X are not assumed to be p-subgroups of G.

Consider the truncation of this complex at dimension m:

0→ k[X?
m]

∂m−→ · · · → k[X?
0 ]→ k → 0.

Since n(P ) ≥ n(S) = m for every p-subgroup P , this complex has no homology in di-
mensions i < m. Let Km = ker ∂m. The constant module k and the modules k[X?

i ] have
finite projective resolutions (see [20, Cor 3.14, 3.15]), hence by an easy induction we can
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conclude that Km has a finite projective resolution. Then by Proposition 8.3, Km(1) is a
p-permutation module and for every p-subgroup P ,

BrResP : Km(P )→ Km(1)[P ]

is an isomorphism of k[NG(P )]-modules.

Since XS
i = ∅ for every i > m, we have Km(S) ∼= H̃m(XS ; k), and hence k | Km(S).

This means that Km(1)[S] also has k as a summand. Let U be a component of Km(1) such
that U [S] ∼= k. Then U has vertex S, and by [12, Theorem 3.2] U corresponds to k under
the Green correspondence. Thus U ∼= k by the uniqueness of the Green correspondent. We
conclude that k | Km(1).

By applying Lemma 8.2 inductively, we see that H̃n(X; k) has a summand M that is
a capped Dade module satisfying [M ] =

∑n
i=m+1 ΩXi . Since XS

i 6= ∅ for all i ≤ m, by

definition we have ΩXi = 0 in DΩ(G) for all i ≤ m. Hence we obtain

[M ] =
n∑
i=1

ΩXi = ΨG

(
n∑
i=1

ωXi

)
= ΨG(Dim(X)).

Note that the last equality holds because X is full. This completes the proof. �

Now we are ready to give a proof for Theorem 1.6.

Proof of Theorem 1.6. Assume that f = dim(V ) − dim(W ) for some k-oriented real rep-
resentations V and W of G. The unit sphere X = S(V ) can be triangulated to obtain a
full G-CW-complex structure on X (see [21]). It is clear that X is a tight Moore G-space.

By the assumption of k-orientability, the NG(S)-action on H̃∗(X
S ; k) is trivial, so X is

a capped Moore space. Hence, by Theorem 8.4, the reduced homology H̃n(X; k) has a
summand M that is a capped Dade G-module satisfying

[M ] = ΨG(Dim(X))

in DΩ(G). Since H̃n(X; k) ∼= k as a kG-module, M is isomorphic to k. Hence

ΨG(Dim(X)) = [k] = 0.

A similar conclusion also holds for the G-sphere Y = S(W ), so we obtain

ΨG(f) = ΨG(Dim(V )−Dim(W )) = ΨG(Dim(X)−Dim(Y )) = 0,

and hence f ∈ ker ΨG. �

9. Oriented Artin-Borel-Smith functions

In the case where G = S is a p-group, the kernel of the Bouc homomorphism ΨS :
C(S) → DΩ(S) is precisely the subgroup of superclass functions satisfying the Borel-
Smith conditions, which we now recall (see [11, Thm. 1.2 and Def. 3.1]).

Definition 9.1. Let S be finite p-group. A superclass function f ∈ C(S) = C(S,Fp) is
called a Borel-Smith function if it satisfies the following conditions:

(i) If LCK ≤ S, K/L ∼= Z/p, and p is odd, then f(L)− f(K) is even.
(ii) If LCK ≤ S, K/L ∼= Z/p× Z/p, and {Ki/L}pi=0 are the subgroups of order p in

K/L, then

f(L)− f(K) =

p∑
i=0

(f(Ki)− f(K)).
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(iii) If LCK CN ≤ NS(L) and K/L ∼= Z/2, then f(L)− f(K) is even if N/L ∼= Z/4,
and f(L)− f(K) is divisible by 4 if N/L is the quaternion group Q8 of order 8.

It is known from classical Smith theory that if X is a G-space whose mod-p homology
is isomorphic to the mod-p homology of a sphere, then for every p-subgroup P ≤ G, the
fixed-point set XP also has the mod-p homology of a sphere (see [17, Thm. 4.23]). Let

n(P ) denote the dimension for which H̃∗(X
P ;Fp) 6= 0. Then n is a superclass function,

which satisfies the Borel-Smith functions (see [17, pg. 202-210]). We denote the group of
Borel-Smith functions for a p-group S by Cb(S).

Definition 9.2. Let G be a finite group and S be a Sylow p-subgroup of G. A superclass
function f : Fp → Z is called a Borel-Smith function if its restriction to S is a Borel-Smith
function. We denote the subgroup of Borel-Smith functions in C(G, p) by Cb(G, p).

The following is easy to observe.

Lemma 9.3. The kernel of the Bouc homomorphism ΨG : C(G, p) → DΩ(G) lies inside
Cb(G, p).

Proof. By Lemma 4.5, there is a well-defined restriction homomorphism ResGS : D(G) →
D(S), given by ResGS [M ] = [ResGS M ] for every Dade kG-module M . It is easy to see from
the definitions that

ResGS (ΩX) = ΩResGS X

for every G-set X. There is also a homomorphism ResGS : C(G, p) → C(S) defined by
restriction of domain. We have

ResGS (ωX) = ωResGS X

for every G-set X. This shows that ΨG commutes with the restriction map to S. If f ∈
ker ΨG, then ResGS f ∈ ker ΨS . By [11, Thm. 1.2]), ker ΨG = Cb(S), and hence f ∈ Cb(G, p).

�

In the case where G = S is a p-group, the group of Borel-Smith functions Cb(S) is
exactly equal to the image of the dimension function

Dim : RR(S)→ C(S)

from the real representation ring to the group of superclass functions (see [18]). For an
arbitrary finite group G there is a similar theorem due to Bauer [2], stated in terms of
dimension functions defined on prime-power order subgroups. Let P denote the family of
all subgroups of G with prime-power order and let C(G,P) denote the group of superclass
functions f : P → Z. Bauer imposes the following additional condition on the superclass
functions in C(G,P) (see also [26]).

Definition 9.4. A function f ∈ C(G,P) satisfies the Artin condition if:

(∗) For any distinct prime numbers p and q, consider LCKCH ≤ NG(L) subgroups
of G such that K is a p-group, K/L ∼= Z/p, and H/K ∼= Z/qr. Then f(L) ≡ f(K)
(mod qr−l), where H/K acts on K/L with kernel of order ql.

Bauer proves the following:
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Theorem 9.5 (Bauer [2], Thm. 1.3). Let f ∈ C(G,P) be a superclass function that
satisfies the Borel-Smith conditions when restricted to a Sylow subgroup, as well as the
Artin condition (∗). Then there is a virtual real representation x = [V ] − [W ] such that
f = dimV − dimW .

If one studies the proof of Bauer’s theorem it is easy to see that one needs the Artin
condition (∗) to hold only in the case when K is a cyclic p-subgroup. This follows from
Definition 9.1(ii), which implies that a Borel-Smith function is determined by its values on
the cyclic p-subgroups. Also observe that when p = 2, there is no nontrivial automorphism
of K/L ∼= Z/2, so in this case the Artin condition always holds.

Let k be a field of characteristic p. The real representations in Bauer’s theorem need not
be k-orientable (see Definition 1.5) when p is odd. The problem derives from a certain real
representation of the dihedral group D2p, whose representation sphere is not k-orientable,
used in the induction of Bauer’s proof. We can modify Bauer’s construction to obtain only
k-orientable representations, at the cost of introducing a variation of the Artin condition.
We name this condition only for functions defined on Fp, but it can easily be extended to
families defined on P if necessary.

Definition 9.6. A function f ∈ C(G, p) satisfies the oriented Artin condition if:

(∗∗) For any distinct prime numbers p and q, consider L / K / H ≤ NG(L) subgroups
of G such that K is a cyclic p-group, K/L ∼= Z/p, and H/K ∼= Z/qr. Then
f(L) ≡ f(K) (mod 2qr−l), where H/K acts on K/L with kernel of order ql.

Note that the oriented Artin condition (∗∗) differs from the ordinary Artin condition
(∗) not only in the restriction of our attention to the cyclic p-subgroups H, but also in the
extra factor of 2 in the modular equation. This factor is necessary to obtain k-orientable
representations.

Definition 9.7. An oriented Artin-Borel-Smith function is a superclass function that
satisfies the Borel-Smith conditions of Definition 9.1 and the oriented Artin condition
of Definition 9.6. The subgroup of C(G, p) consisting of the oriented Artin-Borel-Smith
functions is denoted by Cba+(G, p).

Let R+
R (G, k) denote the Grothendieck group of k-oriented real representations of G. The

following is easy to prove using Bauer’s construction in [2, Thm 1.3] with small variations.

Theorem 9.8. The image of the dimension function R+
R (G, k) → C(G, p) is equal to

Cba+(G, p).

Proof. The argument given in [2, Proposition 1.2] directly applies here to give that the
image of the dimension function lies in Cba+(G). Let L/K/H ≤ NG(L) be as in Definition
9.6. If we take m = f(L) and n = f(K) and repeat Bauer’s equivariant cohomology
argument, we obtain that the periodicity of the mod-p cohomology of the group G divides
m−n. The p-period of a group is computed by Swan in [27, Theorem 1 and 2]. According
to these calculations, the p-period of H is 2qr−l.

Conversely, if P ≤ G is a non-cyclic p-subgroup then there is a normal subgroup N E P
such that P/N ∼= Z/p × Z/p. Condition (ii) of Definition 9.1 then implies that the value
of a Borel-Smith function f at P is determined by its values on proper subgroups Q < P .
This implies that a function in f ∈ Cba+(G, p) is uniquely determined by its values on the
cyclic p-subgroups of G.
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Take f ∈ Cba+(F). We will show that there is a virtual representation x ∈ RR(G) such
that Dim(x)(P ) = f(P ) for all cyclic subgroups P ≤ S. The argument is by induction,
so we introduce some terminology for the intermediate step: Given a family of cyclic p-
subgroups H, we say f is realized over H if there is a virtual k-oriented G-representation
x such that Dim(x)(P ) = f(P ) for every P ∈ H.

Any f is realizable at the trivial subgroup 1 ≤ S by taking f(1) copies of the trivial
representation R. Suppose that f is realized over some nonempty family K of cyclic sub-
groups of S. Let K ≤ S be a cyclic subgroup all of whose proper subgroups are contained
in K, and let K′ be the family obtained from K by adding the conjugacy class of K. We
will show that f is also realizable over K′. By induction this will give us the realizability
of f over all cyclic subgroups.

Since f is realizable over K, there is an element x ∈ R+
R (G) such that Dim(x)(J) = f(J)

for every J ∈ K. By replacing f with f −Dim(x), we may assume that f(J) = 0 for every
J ∈ K. To prove that f is realizable over the larger family K′, we will show that for every
prime q, there is an integer nq coprime to q such that nqf is realizable over K′ by some
virtual representation xq ∈ RR(F). This will be enough to complete our proof by a simple
number theory argument (see [26, Theorem 8.7] for details).

If q = p, then by earlier results due to tom Dieck [17] and Dotzel-Hamrick [18], there is
an integer np, coprime to p, such that npf is realized by an element in xp ∈ R+

R (G) (see
also [26, Proposition 4.9]). Thus we may assume that q 6= p.

Let L ≤ K be the unique subgroup of K of index p. Choose H ≤ NG(K) such that
H/K is a Sylow q-subgroup of NG(K). Consider the homomorphism ρ : H → Aut(K)
determined by the H-conjugation action on K, and set R = ker ρ. Note that R is nilpotent
and hence isomorphic to the product K×Rq, where Rq is the unique Sylow q-subgroup of
R. Since K is cyclic and p is odd, Aut(K) is cyclic. Thus H/R is a cyclic q-group, say of
order qt. There is an element h ∈ H such that 〈h〉 ·R = H. The oriented Artin condition
for the subgroups L ≤ K ≤ 〈h〉 ·R gives that 2qt | (f(L)− f(K)).

Let U be the real K-representation defined by U = 2R − W , where W is the 2-
dimensional real representation of K with kernel L defined by sending a generator of
K/L to the rotation by 2π/p. Note that U is a k-orientable representation of K. We can
consider U as a representation of R via the projection map R → K. Let U = IndGR U . It
is easy to see that dim(UJ) = 0 for any J ∈ H. If J ∈ H′ −H, then J is conjugate to K
and we have

dim(UJ) = dim(U) · |NG(K) : K| = 2|NG(K) : H| · |H : K| = 2nqq
t,

where nq := |NG(K) : H| is coprime to q. If we take Vq as f(H)/2qt copies of U , then Vq
realizes nqf . This completes the proof. �

As we pointed out above, when p = 2, both the Artin condition of Definition 9.4 and
the oriented Artin condition of Definition 9.6 hold trivially. So in this case we have

Cba+(G, p) = Cba(G, p) = Cb(G, p).

Note also that when k is of characteristic 2, every real representation is k-orientable, so
R+
R (G, k) = RR(G). Thus when p = 2, the conclusion of Theorem 9.8 coincides with that

of Theorem 9.5. Thus Cba+(G, p) is equal to the image of the dimension function Dim :
RR(G)→ C(G, p), which is also equal to the group of Borel-Smith functions Cb(G, p).

When p is odd, for any L E H with H/L ∼= Z/p, a Borel-Smith function f will satisfy
the modular equation f(L) ≡ f(H) (mod 2). In particular if f ∈ Cba+(G, p) is such
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that f(1) is even, then f(P ) is even for all P ∈ Fp. We call such functions even-valued.

In the proof of Theorem 9.8 we used the representation U , a restriction of a complex
representations to R. From this one can see that an even-valued oriented Artin-Borel-
Smith function f ∈ Cba+(G, p) can be realized by the (real) dimension function of a
complex representation of G. We conclude the following.

Proposition 9.9. Let K be the field such that K = R if p = 2 and K = C if p > 2. Let
f ∈ Cba+(G, p) be such that f(1) is even when p is odd. Then f is in the image of the
dimension function

Dim : RK(G)→ Cba+(G, p)

defined by (DimV )(P ) = dimR(V P ) for every p-subgroup P of G.

Proof. The case p = 2 is clear from the discussion above. Let p > 2 and assume that f(1)
is even. We started the induction in the proof of Theorem 9.8 by subtracting f(1) copies
of the dimension function of the constant real representation from f . Since f(1) is even,
this step can be achieved using f(1)/2 copies of the constant complex representation. In
the inductive steps of the proof, we use the representation U = 2R−W . Both 2R and W
come from complex representations, so IndGR U ∈ RC(G). �

As a consequence of Lemma 9.3 and Theorem 9.8, we have the following:

Theorem 9.10. Let G be a finite group and ΨG : C(G, p)→ DΩ(G) the Bouc homomor-
phism. Then

Cba+(G, p) ⊆ ker ΨG ⊆ Cb(G, p).
In particular, when p = 2, we have ker ΨG = Cba+(G, p) = Cb(G, p).

It is interesting to ask whether the equality ker ΨG = Cba+(G, p) also holds when p is
an odd prime; we were not able to find any counter-examples to this claim. The following
computation gives some evidence for the relevance of the oriented Artin condition:

Lemma 9.11. Let Q E G be a cyclic subgroup of G of order p such that G/Q ∼= Z/qr.
Suppose that G/Q acts on Q with kernel order ql. Then, DΩ(G) ∼= Z/2qr−l and the equality
ker ΨG = Cba+(G, p) holds.

Proof. Since Q is a Sylow p-subgroup of G, we have DΩ(G) is generated by ΩG/1. The
cohomology of the group G with k coefficients is periodic, hence there exists an integer n
such that ∆(G/1)⊗n ∼= k ⊕ (proj). The smallest such n is equal to the p-period of G. By
Swan [27, Thm 1 and 2], the p-period of G is 2qr−l.

Note that [k ⊕ (proj)] = 0 in DΩ(G). Conversely if M is a Dade kG-module such that
[M ] = 0 in DΩ(G), then M ∼= k ⊕ (proj). We conclude that the smallest n such that
∆(G/1)⊗n ∼= k ⊕ (proj) is equal to the exponent of ΩG/1. Hence the exponent of ΩG/1 is

qr−l. Thus DΩ(G) ∼= Z/2qr−l.
If f = a1ωG/1 + aQωG/Q is in the kernel of ΨG, then a1ΩG/1 = 0 giving that 2qr−l

divides a1. Thus a1 = f(1)− f(Q) ≡ 0 (mod 2qr−l), and hence f ∈ Cba+(G, p). �
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