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1. a) (10 pts) Let

-[i-f]

Find all the values for a so that the vector v is in the span of v; and v,. Write the
coordinates of v in with respect to {vy,va}.
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b) (10 pts) Let u = (1, -1, 2)7. The subspace U of R3 is defined by
U={veR|v -u=0}

Find a basis for U.
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2. (20 pts) Consider the matrix

-2 -4 1 0 4
o 0 0 3 3
e 1 2 2 1 4
3 6 0 -2 -5

Convert A to the reduced echelon form and answer the following questions.
a) Write down a basis for the column space of A. What is the rank of A?
b) Write down a basis for the subspace consisting of all the solutions to the equation

Ax = 0.
c) Write down a basis for the subspace consisting of all possible vectors b such that

ATx = b for some x.
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3. (10410 pts) Let S = {u;, u, us} be a basis for R*, where

1 2 1
u, = -1 , Up = 0 , Uz = 3 :
0 1 -1

a) Applying the Gram-Schmidt process to the basis S find an orthogonal basis T =

{V] y V2, V3} s
b) Find the change of basis matrix Psc .
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4. a) (12 points) Let A be an m x n matrix where m 2 n, and let B be an n xn
matrix such that A3 = 0. Suppose that the rank of 3 is r, then what can we say about
the rank of A? Justify your answer with mathematical arguments.
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b) (13 points) Let A be an n xn matrix. Suppose that the product defined on R with
the formula {(v.w) = vT Aw is an inner product. Show that the following two conditions
hold: (i) A is invertible (ii) There is an invertible matrix P such that A= PTP.
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5. e i

Fo'r each of the stfa'tement.s below indicate whether the statement is always true or
sometimes false. Justify your answer with a logical argument.

(111) (? pts) Cousider the vector space M,z of 2 x 3 matrices. Let W be the subset of
M3 formed by 2 x 3 matrices A whose nullity is equal to 1. Then W is a subspace of
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(ii) (5 pts) For every nonzero square matrix A, we have Adj(A) # 0.
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finite dimensional vector space V, then the set

(iii) (5 pts) If {u,v,w}isa basis for a
— v + w} is also a basis for V.
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