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Abstract

This paper aims to enhance a pre-existing financial market model based on statistical physics princi-
ples, particularly spin models. The foundational model characterizes traders as either fundamentalists or
interacting traders, each contributing to market dynamics and price movements. Our goal is to refine this
model, improving its representation of market behaviors, price evolution, and trading volumes, allowing for
a more accurate portrayal and understanding of real-world financial market phenomena such as bubbles and
crashes.

1 Introduction

The intriguing world of finance often borrows con-
cepts from the realm of physics to describe and predict
market behavior. A prime example of this interdisci-
plinary approach is the application of the Ising model,
a physical model of ferromagnetism, to financial mar-
kets. By drawing an analogy between the interactions
of spins and the decisions of traders in a market, re-
searchers have aimed to understand complex market
dynamics.

In this project, we’re looking the Bornholdt’s spin
model [1] that draws inspiration from the Ising model,
portraying each trader as behaving similarly to a
spin, influenced by immediate peers (nearest neigh-
bours) and the overall market sentiment (magnetiza-
tion). This interaction can result in unstable market
activity, especially in periods of low activity, similar to
a low-temperature state in the Ising model.

We aim to use the this model to offer straight-
forward explanations for why stock prices sometimes
experience dramatic increases or sharp declines. The
model incorporates two types of traders: those who
make decisions based on the fundamental value of
stocks, and those who follow market trends. It also
includes a mechanism to match buy and sell orders,
just like a real market does.

According to the model, stock prices come from
their true value along with the collective sentiment of
traders, and the volume of trading is indicative of this
overall sentiment. Impressively, this model can repli-
cate real-life market phenomena, such as periods of in-
tense trading and significant price changes. [2]

We intend to enhance this model to better mir-
ror the intricacies of real market behavior, which will
help us understand the intricate movements of financial
markets.

2 Presentation of the Model

In the original study that our work is based on, a
special model was developed by T. Kaizoji, S. Born-
holdt and Y. Fujiwara. [2] First, presentation of their
work is necessary to understand our further develep-
ments on their model.

Consider a stock market where a significant volume
of a stock is traded at price p(t). In this market,
two distinct groups of traders operate, each employing
different trading strategies: fundamentalists and inter-
acting traders. The model assumes that the number
of fundamentalists, m, and the number of interacting
traders, n, remain constant. The model aims to por-
tray the dynamic fluctuations of stock prices within
brief periods, typically a single day, capturing the nu-
anced decision-making processes of each category of
traders with higher precision. [2]

2.1 Fundamentalists

Fundamentalists in this model are traders who rely
significantly on the intrinsic value of the stocks. They
possess a substantial understanding of the fundamen-
tal value of the stock, p∗(t). Fundamentalists tend to
purchase stocks when they perceive them to be in a
discount zone relative to their intrinsic value and sell
when they appear to be in a premium zone. Thus, the
buying propensity of a fundamentalist is described as:

xF (t) = am(ln p∗(t)− ln p(t)) (1)

where a and m are predefined constants, symboliz-
ing the reaction coefficient and the number of funda-
mentalists, respectively.

2.2 Interacting traders

During each trading cycle, an interacting trader has
two options: to buy or sell a specified quantity of stock,
denoted as b. Interacting traders in this model are
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identified by an integer value ranging between 1 and
n. Each interacting trader, i, is characterized by a
variable, si, which reflects their trading stance. Specif-
ically, the variable si is assigned a value of +1 if the
trader opts to buy, and −1 if the trader chooses to sell
the stock.

To elaborate on the decision-making process of in-
teracting traders, the model integrates dynamics from
the spin model. The trading inclination, si, of each in-
teracting trader is updated using a heat-bath dynamics
method. Mathematically, this is represented as:

si(t+ 1) = +1 with p =
1

1 + exp(−2βHi(t))
, (2)

si(t+ 1) = −1 with 1− p, (3)

where Hi(t) signifies the local field of the spin
model, directing the strategic decision of each trader.

Consider a scenario where the strategic choices of
an interacting trader are influenced predominantly by
two categories of information: local and global. Lo-
cal information encompasses the behaviors and strate-
gies adopted by nearest neighbour interacting traders,
determining the immediate trading environment. In
contrast, global information represents broader market
trends, reflecting the aggregated stance of larger trader
groups, whether they lean towards buying or selling.

This model assumes that each interacting trader’s
decisions are primarily influenced by the behaviors
of their immediate neighbors and the overall market
trends. One crucial aspect is the determination of
whether a trader aligns with the majority or minor-
ity in terms of market stance, and understanding the
magnitude of each group. This is quantified by the
value of the magnetization M(t), defined as:

M(t) =
1

n

n∑
i=1

si(t). (4)

Interacting traders aim to increase their profits
through trading. They believe that aligning with the
majority group is essential for earning profits. How-
ever, just being part of the majority isn’t enough. The
majority group needs to grow over each trading period.
Traders in the majority group realize that as the size
of the group increases, |M(t)| gets larger, making it
more challenging to maintain or increase the group’s
size further.

Hence, traders in the majority tend to switch to the
minority group to avoid potential losses, like avoiding
a significant market drop. In simple terms, as the ma-
jority group grows, traders in the group become more
cautious. Conversely, traders in the minority group
are more likely to take risks as the size of the major-
ity group expands, switching their positions to join the
majority and increase their profits.

To summarize, the magnitude of |M(t)| signifi-
cantly influences the propensity of traders, whether in
the majority or minority group, to shift away from their
current affiliations. The specific interactions involved
are given by the local field Hi(t):

Hi(t) =

m∑
j=1

Jijsj(t)− αsi(t)M(t), (5)

where α is a positive constant that encompasses
global coupling. The initial term is selected based on
a localized Ising Hamiltonian that accounts for inter-
actions between nearest neighbors, where Jij = J and
Jii = 0 for unrelated pairs.

The model further assumes that the excessive de-
mand followed by interacting traders for the stock is
approximated by

xI(t) = bnM(t). (6)

This equation is crucial in estimating the surplus
demand manifested by interacting traders in the stock
market.

2.3 Market Dynamics

This section focuses on explaining the decision-
making processes of traders and determining the sub-
sequent market price. The model introduces a market-
clearing system in which a market maker facilitates
trading, aligning the market price with the market-
clearing values. This ensures that buy and sell orders
are matched effectively.

The interplay between demand and supply is cap-
tured by the equation:

xF (t) + xI(t) = am[ln p∗(t)− ln p(t)] + bmM(t) = 0.
(7)

Consequently, the model computes the market price
and trading volume as:

ln p(t) = ln p∗(t) + λM(t), λ =
bn

am
(8)

V (t) = bn
1 + |M(t)|

2
. (9)

The model categorizes market situations based on
the value of M(t), determining whether the market is
in a bullish (|M(t)| > 0) or bearish (|M(t)| < 0) state.
A relative change in price, or the log-return, is then
defined, enhancing our understanding of market price
variations.

For a scenario focusing primarily on the participa-
tion of fundamentalists in trading (p(t) = p∗(t)), the
model aligns with the Efficient Market Hypothesis [3],
implying that prices would follow a random walk. This
is supported by the assumption of a Gaussian process,
which supports the random walk theory of the log-
returns of asset prices, therefore offering insight into
the fundamental price evolution.

2.4 Introducing different traders

Building upon the foundation laid by Kaizoji, Born-
holdt, and Fujiwara, our study introduces a novel class
of market participants: the high beta traders and the
normal interacting traders. The distinction between
these two types of traders lays in their respective levels
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of market sensitivity and information processing fac-
tors encapsulated in the parameter β, which denotes
the inverse temperature in statistical mechanics.

2.4.1 High Beta Traders

High beta traders are defined by their heightened
sensitivity to the market, modeled by an extremely
high beta value, approaching the limit of market re-
sponsiveness.

For high values of β, we consider the limit as
β → ∞, simplifying the probability p to 1

2 , assuming
that Hi(t) is finite. Thus, we have:

p =
1

1 + exp(−2βhi(t))
≈ 1

2
, (10)

1− p =
1

2
. (11)

Consequently, the updated states of the spins for
high beta traders become:

si(t+ 1) = +1 with p =
1

2
, (12)

si(t+ 1) = −1 with 1− p =
1

2
. (13)

These traders represent a class of market partici-
pants with maximum information entropy, indicative
of an essentially random behavior. Their decisions are
not swayed by the typical influence of market trends or
the actions of their peers. Consequently, their trading
behavior is highly unpredictable and serves as a proxy
for the most extreme speculative forces in the market.

2.4.2 Normal Interacting Traders

In contrast, normal interacting traders possess a
moderate level of responsiveness, defined by a stan-
dard beta value (β = 2). These traders are influenced
by both local and global market information, making
decisions that balance individual insights with broader
market sentiments. Their behavior can be considered
more representative of the average market participant,
who is neither completely random nor perfectly ratio-
nal.

3 Market Initialization and Sim-
ulation Dynamics

The simulation begins with an equitable distri-
bution of high beta traders and normal interacting
traders, totaling n, throughout a two-dimensional,
10 ∗ 10 lattice. Initially, the traders are randomly dis-
tributed, reflecting a market free of spatial or informa-
tional segmentation.

To assess the impact of spatial and informational
homogeneity on market dynamics, we support the ran-
dom distribution scenario with a second initialization
configuration: a market divided into two distinct zones.

On the left side of the lattice reside all normal inter-
acting traders, while the right side is solely occupied
by high beta traders. This segregation provides an in-
vestigation into the interaction and diffusion of trading
strategies across a market that is initially polarized in
terms of trader behavior and market outlook.

3.1 Simulation Objectives and Ex-
pected Outcomes

The core objective of our simulation is to analyze
how the presence and distribution of different types of
traders affect market dynamics, price formation, and
volatility. We aim to understand whether the intro-
duction of high beta traders worsen market fluctua-
tions, leading to greater extremes in price movements,
or whether their randomness simply injects noise into
the market without significantly altering its overall be-
havior.

Moreover, by starting the simulation with segre-
gated groups of traders, we intend to explore how in-
formation and trading strategies percolate through a
divided market. We hypothesize that the interface be-
tween the two trader groups will be a critical zone,
giving rise to complex trading dynamics as the two
contrasting strategies (random versus responsive) con-
solidate.

The outcomes of this simulation have the poten-
tial to provide deeper insights into the consequences of
trader heterogeneity on financial markets. Specifically,
we aim to contribute to the existing knowledge on how
extreme speculative behavior, modeled by high beta
traders, interacts with and influences the more ratio-
nal strategies employed by normal interacting traders.

3.2 Simulation Methodology

The simulation will be executed over a series of time
steps, with each step allowing traders to update their
positions based on their individual beta values and the
computed local field (Eq. 5), as per the heat-bath dy-
namics method. For our simulation, parameters will
be adjusted as following: J = 1 and α = 2.8. These
parameters play a pivotal role in shaping market dy-
namics because they directly influence the local field,
as described by Equation 5. The parameter J controls
the pace at which the market responds to the interac-
tions between neighboring traders. When J is large,
the market adapts slowly, and this tends to produce
more distinct, step-like changes in market behavior.
Conversely, a smaller J leads to more gradual mar-
ket responses, resulting in smoother, more continuous
price movements. The parameter α, on the other hand,
controls the strength of the market’s overall tendency
to move from premium and discount zones towards an
equilibrium point, under the guiding influence of mag-
netization. The process for updating the trading stance
(si) will remain consistent with the model of Kaizoji et
al. for normal beta valued interacting traders, there-
fore maintaining the structure of the underlying the-
oretical framework while introducing the new element
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of trader diversity.
Market prices will evolve according to the estab-

lished equations, incorporating the distinct demand
functions of the fundamentalists and the speculative
pressures exerted by the interacting traders. The re-
sulting time series of prices, log-returns, and other rele-
vant financial indicators will be analyzed to distinguish
the effects of the introduced trader heterogeneity.

This methodology will enable us to compare the re-
sultant market behavior under two initial conditions:
one reflecting a random mixing of trader types and
the other representing a market mixed into two ide-
ologically disparate halves. Through this comparative
analysis, we aim to shed light on the complex dynamics
that govern financial markets and the role that trader
diversity plays in shaping them.

4 Results

Figure 1: Market initialization with random-shuffled traders.

Figure 2: Market initialization with distinctly distributed traders.

The comparative analysis between the random
shuffled case (Fig. 1) and the distinctly distributed
case (Fig. 2) gives a great understanding about the in-
fluence of trader types on market dynamics. The find-

ings highlight the impact of trader interactions and the
consequences of collective behavior on financial indica-
tors such as log-returns and market magnetization.
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Average Log-returns
Random-
Shuffled

Distinctly
Distributed

Normal
Traders

0.001334 0.002618

High Beta
Traders

0.001522 0.000984

In the random shuffled case, the market dynam-
ics are characterized by a higher degree of fluctuation,
which is attributed to the presence of high beta traders
randomly spread among normal traders. The extreme
trading behaviors of the high beta traders seem to ex-
ert a disruptive influence on the normal traders, leading
to a decrease in their log-returns. This scenario under-
lines the significance of one’s financial neighbors and
suggests that the proximity to less rational, high-risk
takers can negatively affect the performance of more
moderate, rational market participants. Additionally,
the random distribution of high beta traders across the
market implies a higher temperature state of the sys-
tem, indicative of more volatile market behavior.

Conversely, in the distinctly distributed case, the
market experiences less severe fluctuations. The nor-
mal traders, segregated from the high beta traders,
demonstrate higher returns, unaffected by the extreme
behaviour of their high beta counterparts. This ob-
servation suggests that a community of like-minded
traders can achieve more stable and potentially more
profitable outcomes when insulated from extreme
traders. High beta traders, now in a homogeneous
group, exhibit lower returns compared to when they
are mixed with normal traders. This could reflect the
diminishing returns of high-risk strategies in an echo
chamber-like environment without the balance pro-
vided by more risk-averting trading strategies.

The most significant market activity occurs at the
boundary between the two distinct groups. It is at this
boundary where the different strategies meet and inter-
act, causing potential fluctuations. Unlike the constant
market-wide fluctuations seen in the random shuffled
case, the distinctly distributed case presents fluctua-
tions that are more localized to the regions of ideolog-
ical transition between the two trader types.

The outcomes of the study make it clear that the
market behaves very differently depending on the mix
and placement of traders with various strategies. When
traders with all sorts of strategies are thrown together,
the market gets pretty shaky, which can mess with ev-
eryone’s profits. But when traders are sorted into their
own zones, things tend to be less wild, and regular
traders often do better because they’re not caught up
with the high-risk takers. This shows that having a
variety of trader behaviors and where they are in the
market can really change how stable the market is and
how much money people can make. It’s a heads-up
that how traders are arranged and who’s near who can
really shape what happens in the market, not just for
one kind of trader but for everyone involved.

5 Correlation with Real-World
Markets

In the real-world financial markets, the dynamics
observed in simulations often correlate with complex
interactions among different market participants. The
impact of financial contagion and network theory sug-
gests that the structure of connections among agent
significantly influences systemic risk. For instance,
Allen and Gale’s research highlights how disturbances
can spread through a financial system, affecting vari-
ous entities differently based on their interconnected-
ness. [4]

Furthermore, the influence of high-frequency trad-
ing, parallel to the simulated high-beta traders, is
well-documented, with Brogaard, Hendershott, and
Riordan illustrating how such activities can lead to in-
creased price discovery and market volatility. [5] These
traders, operating at high speeds, can worsen market
movements, similar to the disruptive influence noted
between high beta and normal traders in the simula-
tion.

Additionally, the clustering of trading behaviors or
strategies can have a profound impact on market liq-
uidity and price discovery. J.P. Morgan Asset Man-
agement has noted that the liquidity cost tradeoff is
an essential consideration where the concentration of
trading actions can affect market dynamics, echoing
the simulation results where the separation of traders
into distinct clusters led to varying outcomes. [6]

These real-world studies support the idea that the
arrangement and behavior of traders can indeed shape
market dynamics significantly. While the simulation
models provide a ideal representation, empirical evi-
dence suggests that such models can capture essential
aspects of market behavior, though it’s critical to rec-
ognize that real markets also contend with factors
beyond the scope of these models.

6 Future Work

For future work, we plan to look into the critical
moments when market volatility—reflected in sharp
movements in magnetization—peaks or plummets. By
zooming in on these time-steps, we aim to unravel the
intrinsic dynamics of traders’ states and decisions dur-
ing periods of heightened activity. Understanding the
triggers and responses of these fluctuations could offer
insights into the collective market behavior and indi-
vidual trading strategies.

Furthermore, we will explore the concept of adap-
tive trader strategies. Recognizing that markets often
exhibit periodic patterns for realistic cases, there may
be potential to come up with trading philosophies that
adapt to these periodicities. The goal of this adaptive
approach would be to finesse the balance between risk
and return, optimizing traders’ positions in accordance
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with evolving market conditions and emergent trends.
By doing so, traders could potentially enhance their
performance, achieving greater returns while mitigat-
ing risks associated with volatile market phases and
other traders’ behaviour.
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7 Appendix

Python code for the simulation.

import numpy as np

import matplotlib.pyplot as plt

# Constants and Parameters

M, N = 10, 10

T = 0.5

BETA = 1 / T

HIGH_BETA = 1e5

J = 1

ALPHA = 2.8

P_STAR = 1

a = 1

m = 100

b = 1

n = M * N

class Trader:

def __init__(self, beta):

self.s = 1 if np.random.rand() < 0.5 else -1

self.beta = beta

def update_spin(self, h):

bh = self.beta * h

if bh > 100:

p = 1

elif bh < -100:

p = 0

else:

p = 1 / (1 + np.exp(-2 * bh))

self.s = 1 if np.random.rand() < p else -1

class HighBetaTrader(Trader):

def __init__(self):

super().__init__(HIGH_BETA)

class NormalTrader(Trader):

def __init__(self):

super().__init__(BETA)

def initialize_lattice():

traders = [NormalTrader() for _ in range(n // 2)] + [HighBetaTrader() for _ in range(n //

2)]

np.random.shuffle(traders)

return [traders[i*N:i*N+N] for i in range(M)]

#def initialize_lattice():

# half = N // 2 # half the lattice width

# left_traders = [NormalTrader() for _ in range(n // 2)]

# right_traders = [HighBetaTrader() for _ in range(n // 2)]

# trader_lattice = []

# for _ in range(M):

# row = left_traders[:half] + right_traders[:half]

# trader_lattice.append(row)

# left_traders = left_traders[half:]
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# right_traders = right_traders[half:]

# return trader_lattice

def compute_local_field(trader_lattice, i, j):

h = 0

M_t = np.mean([t.s for row in trader_lattice for t in row])

for x, y in [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]:

x = x % M

y = y % N

h += J * trader_lattice[x][y].s

h -= ALPHA * trader_lattice[i][j].s * abs(M_t)

return h

def fundamentalist_demand(p_t):

return a * m * (np.log(P_STAR) - np.log(p_t))

def simulate(steps=2000):

trader_lattice = initialize_lattice()

magnetizations = []

prices = [P_STAR]

trader_log_returns, high_beta_log_returns = [], []

for step in range(steps):

# Initialize current returns for the time step

current_trader_returns, current_high_beta_returns = [], []

for i in range(M):

for j in range(N):

old_spin = trader_lattice[i][j].s

h = compute_local_field(trader_lattice, i, j)

trader_lattice[i][j].update_spin(h)

# Calculate the market return after all traders potentially change spin

if step > 0: # Ensure there is a previous price to compare

r_t = np.log(prices[-1]) - np.log(prices[-2])

# Now, we iterate over all traders to calculate their individual returns

for i in range(M):

for j in range(N):

if isinstance(trader_lattice[i][j], NormalTrader):

current_trader_returns.append(r_t if trader_lattice[i][j].s == 1 else

-r_t)

elif isinstance(trader_lattice[i][j], HighBetaTrader):

current_high_beta_returns.append(r_t if trader_lattice[i][j].s == 1 else

-r_t)

M_t = np.mean([t.s for row in trader_lattice for t in row])

magnetizations.append(M_t)

xF = fundamentalist_demand(prices[-1])

xI = b * 0.5 * n * M_t

new_price = prices[-1] * np.exp((xF + xI) / (a * m))

prices.append(new_price)

# Record average return for each type of trader during this time step

if step > 0: # No returns to record for the first step since there is no previous price

trader_log_returns.append(np.mean(current_trader_returns))

high_beta_log_returns.append(np.mean(current_high_beta_returns))
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return trader_log_returns, magnetizations, prices, high_beta_log_returns

trader_log_returns, magnetizations, prices, high_beta_log_returns = simulate()

plt.figure(figsize=(15, 7))

# Log Returns

plt.subplot(3, 1, 1)

plt.plot(trader_log_returns, label=’Normal Trader’, color=’blue’)

plt.plot(high_beta_log_returns, label=’High Beta Trader’, color=’red’, linestyle=’--’)

plt.title(’Log-return r(t)’)

plt.xlabel(’Time’)

plt.ylabel(’r(t)’)

plt.legend()

# Magnetization

plt.subplot(3, 1, 2)

plt.plot(magnetizations, label=’Magnetization’, color=’green’)

plt.title(’Magnetization M(t)’)

plt.xlabel(’Time’)

plt.ylabel(’M(t)’)

plt.legend()

# Price

plt.subplot(3, 1, 3)

plt.plot(prices, label=’Price’, color=’purple’)

plt.title(’Price p(t)’)

plt.xlabel(’Time’)

plt.ylabel(’p(t)’)

plt.legend()

plt.tight_layout()

plt.show()

# Statistics

print("Normal Trader Stats:")

print(f"Average Log-return: {np.mean(trader_log_returns)}")

print(f"Average Price: {np.mean(prices)}")

print("\nHigh Beta Trader Stats:")

print(f"Average Log-return: {np.mean(high_beta_log_returns)}")

print(f"Average Price: {np.mean(prices)}")
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