Question 1: In a paper published in year 2000 Aykut Barka and colleagues estimated the probability of occurance of a major earthquake in Istanbul in the following 30 years as 60%. (The paper may be accessed through the link http://quake.usgs.gov/research/deformation/modeling/papers/istanbul/istanbul.pdf)
(a) Assuming a constant event rate for the process, determine this rate. (In your answers to this question, use "years" as your basic unit of time.)
(b) What is the expected waiting time $<t>$?
(c) Find the fluctuation $\Delta t=\sqrt{\left\langle t^{2}\right\rangle-\langle t\rangle^{2}}$ in this variable.
(d) In how many years does the probability of occurance reach 90% ?
(e) Assume that the event rate was zero at the time the paper was published, but has been increasing linearly since then, i.e. $\omega(t)=\alpha t$, where $t=0$ corresponds to year 2000. Find the value of α that would result in the same 60% event probability in 30 years.
(f) Repeat parts (b), (c), and (d) above for this rate.

Question 2: A system can be in one of two states. Transition rates between these states are given as $\omega_{1 \rightarrow 2}$ and $\omega_{2 \rightarrow 1}$. Given that at time $t=0$ the system is known to be in state 1.
(a) Find the probabilities $P_{1}(t)$ and $P_{2}(t)$ of the system being in state 1 or state 2 as functions of time.
(b) Show that the probabilities will behave as expected from our discussion in class when $\omega_{2 \rightarrow 1}=0$.

