First Exam Solutions
Spring 2023
Phys 334

1. $Z=\int \cdots \int \exp (-\beta H\{p, q\}) d^{3 N} q d^{3 N} p /\left(N!h^{3 N}\right)$ with $H\{p, q\}=\sum_{i=1}^{3 N} p_{i}^{2} / 2 m-\sum_{i=1}^{N} m g z_{i}$

So, $Z=\left(Z_{1}\right)^{N} /\left(N!h^{N}\right)$ with $Z_{1}=\left[\int \exp \left(-\beta p^{2} / 2 m\right) d p\right]^{3} \int_{0}^{h} \exp (-\beta m g z) d x \int d y \int d z$
$=[2 m \pi / \beta]^{3 / 2} A(1-\exp (-\beta m g h)) /(\beta m g)$
2. $P=U / 3 V=\left(b V T^{4}\right) / 3 V=b T^{4} / 3$ which is constant for constant T.

Work done by system: $W=\int_{V_{o}}^{2 V_{o}} P d V=b V_{o} T_{o}^{4} / 3$
Change in the internal energy of the system: $\Delta U=\left(b 2 V_{o} T_{o}^{4}\right)-\left(b V_{o} T_{o}^{4}\right)=b V_{o} T_{o}^{4}$
Heat must supply these energies: $Q=\Delta U+W=4 b V_{o} T_{o}^{4} / 3$
3. $\quad \frac{\partial}{\partial t} \mathrm{P}=\omega\left(\begin{array}{rrr}-1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 2 & -1\end{array}\right) \quad \mathrm{P} \quad \begin{aligned} & \text { with the characteristic equation } \\ & 2-(\lambda+1)(\lambda+2)(\lambda+1)=0 \\ & \lambda\left(\lambda^{2}+4 \lambda+5\right)=0\end{aligned}$
which results in $\lambda=0$ and $\lambda=-2 \pm i$
Complex eigenvalues mean that the system will have a decaying exponential approach to equilibrium.
$\lambda=0$ corresponds to the equilibrium eigenvalue and results in the corresponding right eigenvector
$\frac{1}{5}\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$ So, $p_{1}(t)$ will start from $p_{1}(0)=1$ and decay to $p_{1}(\infty)=2 / 5$ with a form $\exp (-2 \omega t)\left\{\begin{array}{c}\sin (\omega t) \\ \cos (\omega t)\end{array}\right\}$
4.
(a) $Z=\left(Z_{1}\right)^{N} \quad Z_{1}=\sum_{n} \exp \left(-\beta E_{n}\right)=\sum_{n=0}^{m-1} \exp \left(-\beta n E_{o}\right)=\left[1-\exp \left(-\beta m E_{o}\right)\right] /\left[1-\exp \left(-\beta E_{o}\right)\right]$
(b) $U=[E]=-\partial / \partial \beta \ln Z=E_{o} \exp \left(-\beta E_{o}\right) /\left[1-\exp \left(-\beta E_{o}\right)\right]-m E_{o} \exp \left(-\beta m E_{o}\right) /\left[1-\exp \left(-\beta m E_{o}\right)\right]$ $=E_{o} /\left[\exp \left(\beta E_{o}\right)-1\right]-m E_{o} /\left[\exp \left(\beta m E_{o}\right)-1\right]$
(c) For high temperatures, β is small, expanding the exponentials,
$U \approx E_{o} /\left[1+\left(\beta E_{o}\right)+\left(\beta E_{o}\right)^{2} / 2+\cdots-1\right]-m E_{o} /\left[1+\left(\beta m E_{o}\right)+\left(\beta m E_{o}\right)^{2} / 2+\cdots-1\right]$
$\approx\left(1 /\left[1+\beta E_{o} / 2\right]-1 /\left[1+\beta m E_{o} / 2\right]\right) / \beta$
$\approx E_{o}(m-1) / 2$. At high temperatures all states are equally occupied and the average energy becomes the average energy of all of the states.

