Final Exam Solutions
Spring 2023

Bilkent University

Phys 334

1. (a) $Z=\int d^{3 N_{1}} q_{1} d^{3 N_{2}} q_{2} d^{3 N_{1}} p_{1} d^{3 N_{2}} p_{2} \exp \left(-\beta \sum p_{1 i}^{2} / 2 m_{1}-\beta \sum p_{2 i}^{2} / 2 m_{2}\right) /\left(N_{1}!N_{2}!h^{3\left(N_{1}+N_{2}\right)}\right)$

Each Gaussian integral gives a factor $\int d p \exp \left(-\beta p^{2} / 2 m\right)=\sqrt{2 m \pi / \beta}$ and each triple position integral gives a factor of V. We then have
$Z=\left(2 m_{1} \pi / \beta\right)^{3 N_{1} / 2}\left(2 m_{2} \pi / \beta\right)^{3 N_{2} / 2} V^{N_{1}+N_{2}} /\left(N_{1}!N_{2}!h^{3\left(N_{1}+N_{2}\right)}\right)$
(b) Number of quadratic degrees of freedom $=3\left(N_{1}+N_{2}\right) \Longrightarrow U=3\left(N_{1}+N_{2}\right) k_{B} T / 2$
(c) $A=-\ln Z / \beta$ and $\left.P=-\frac{\partial A}{\partial V}\right)_{T}$
$\Longrightarrow P=\frac{\partial}{\partial V}(\ln Z) / \beta=\frac{\partial}{\partial V}\left(\ln V^{N_{1}+N_{2}}+\ln \cdots\right) / \beta=\left(N_{1}+N_{2}\right) /(V \beta)$
or $P V=\left(N_{1}+N_{2}\right) k_{B} T$.
2.(a) Probability that n particles have energy E_{1} and $N-n$ particles have energy E_{2} is
$P(n)=\exp \left(-\beta n E_{1}-\beta(N-n) E_{2}\right) / Z$ with $Z=\sum_{k=0}^{N} \exp \left(-\beta k E_{1}-\beta(N-k) E_{2}\right)$
or, in our case, as $E_{1}=0$ and $E_{2}=\epsilon$, we have $P(n)=\exp [-\beta(N-n) \epsilon] / Z$ with

$$
\begin{aligned}
Z & =\sum_{k=0}^{N} \exp (-\beta(N-k) \epsilon)=\exp (-\beta N \epsilon)\{1-\exp [\beta(N+1) \epsilon]\} /[1-\exp (\beta \epsilon)] \\
& =[1-\exp (-\beta(N+1) \epsilon] /[1-\exp (-\beta \epsilon)] \text { so that }
\end{aligned}
$$

$$
P(n)=\exp [-\beta(N-n) \epsilon][1-\exp (-\beta \epsilon)] /[1-\exp (-\beta(N+1) \epsilon]
$$

(b) $P(N)=[1-\exp (-\beta \epsilon)] /[1-\exp (-\beta(N+1) \epsilon] \longrightarrow 1-\exp (-\beta \epsilon)$ as $N \rightarrow \infty$.
3. We have

$$
\begin{aligned}
Z & =\sum_{\left\{S_{i}= \pm 1\right\}} \exp \left(K S_{1} S_{2}\right) \exp \left(K^{\prime} S_{2} S_{3}\right) \exp \left(K S_{3} S_{4}\right) \cdots \exp \left(K^{\prime} S_{N} S_{1}\right) \\
& =\sum_{\left\{S_{i}= \pm 1\right\}} T_{S_{1}, S_{2}} \quad U_{S_{2}, S_{3}} \quad T_{S_{3}, S_{4}} \quad \cdots
\end{aligned} U_{S_{N}, S_{1}}, \quad \operatorname{Tr}(T U)^{N / 2} \text { where } \quad \begin{array}{ll}
T= & \left(\begin{array}{ll}
e^{K} & e^{-K} \\
e^{-K} & e^{K}
\end{array}\right) \text { and } U=\left(\begin{array}{ll}
e^{K^{\prime}} & e^{-K^{\prime}} \\
e^{-K^{\prime}} & e^{K^{\prime}}
\end{array}\right) \text { so that } T U=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \\
& \quad \text { with } \begin{array}{l}
a=e^{K+K^{\prime}}+e^{-K-K^{\prime}}=2 \cosh \left(K+K^{\prime}\right) \\
b=e^{K-K^{\prime}}+e^{K^{\prime}-K}=2 \cosh \left(K-K^{\prime}\right)
\end{array}
\end{array}
$$

Eigenvalues of $T U$ may be determined from $(a-\lambda)^{2}-b^{2}=0$ which yields $\lambda_{ \pm}=a \pm b$.
We then get $Z=\lambda_{+}^{N / 2}+\lambda_{-}^{N / 2}$.

