

 $U = \int_0^{\sqrt{N}} \hbar \omega_c (n+1) 2n dn \approx \frac{2}{3} \hbar \omega_c N^{3/2}.$

2.(a) Ordering the total angular momentum states in the sequence $|00\rangle |11\rangle |10\rangle |1-1\rangle$,

state	probability	expansion	vector
	1/4	$ 1 1\rangle$	$(0\ 1\ 0\ 0)^T$
$(\uparrow\uparrow\rangle+i \downarrow\downarrow\rangle)/\sqrt{2}$	1/4	$(1 1\rangle + i 1 - 1\rangle)/\sqrt{2}$	$\left(0 \ \frac{1}{\sqrt{2}} \ 0 \ \frac{i}{\sqrt{2}}\right)^T$
$(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)/\sqrt{2}$	1/2	$ 0 0\rangle$	$(1 \ 0 \ 0 \ 0)^T$
(b)	-		

$$\rho = \frac{1}{4} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} (0\ 1\ 0\ 0) + \frac{1}{4} \begin{pmatrix} 0\\\frac{1}{\sqrt{2}}\\0\\\frac{i}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0\ \frac{1}{\sqrt{2}}\ 0\ \frac{-i}{\sqrt{2}} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} (1\ 0\ 0\ 0) = \begin{pmatrix} \frac{1}{2}\ 0\ 0\ 0\\0\frac{3}{8}\ 0\ \frac{-i}{8}\\0\ 0\ 0\\0\frac{i}{8}\ 0\ \frac{1}{8} \end{pmatrix}$$

Easy to check that $Tr(\rho) = 1$. (c)

$$[L^{2}] = \operatorname{Tr}(\rho L^{2}) = \operatorname{Tr}\left[\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{3}{8} & 0 & \frac{-i}{8}\\ 0 & 0 & 0 & 0\\ 0 & \frac{i}{8} & 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2 \end{pmatrix} \hbar^{2}\right] = \operatorname{Tr}\left(\begin{pmatrix} 0 & \cdot & \cdot & \cdot\\ \cdot & \frac{3}{4} & \cdot & \cdot\\ \cdot & \cdot & 0 & \cdot\\ \cdot & \cdot & 0 & \cdot\\ \cdot & \cdot & \cdot & \frac{1}{4} \end{pmatrix} \hbar^{2} = \hbar^{2}$$

(d)

$$[L_z] = \operatorname{Tr}(\rho L_z) = \operatorname{Tr}\left[\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{3}{8} & 0 & \frac{-i}{8}\\ 0 & 0 & 0 & 0\\ 0 & \frac{i}{8} & 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix} \hbar\right] = \operatorname{Tr}\left(\begin{array}{ccc} 0 & \cdot & \cdot & \cdot\\ \cdot & \frac{3}{8} & \cdot & \cdot\\ \cdot & \cdot & 0 & \cdot\\ \cdot & \cdot & \frac{-1}{8} \end{array}\right) \hbar = \frac{\hbar}{4}$$

3. (a) $\iiint |R_{10}(r)Y_1^0(\theta,\phi)|^2 \sin\theta \ d\theta d\phi r^2 dr = A^2 \int_0^\infty \exp(-2r/a)r^2 dr = A^2 \ 2!/(2/a)^3 \Longrightarrow A = 2a^{-3/2}$ (b) $E_{10}^{(1)} = A^2 \int_0^\infty V_o \exp(-2r/a - r/D)r^2 dr = V_o A^2 \ 2!/[(2/a) + 1/D]^3 = V_o/(1 + a/2D)^3$ (c) When $D \to \infty$, one is left with a constant potential V_o , which trivially shifts all energies by that amount.