First Exam Solutions
Spring 2024
1.

(a) $E=\hbar \omega_{c}\left(n_{x}+n_{y}+1\right)$ with $n_{x}, n_{y}=0,1,2, \cdots$.
(b) All particles with same $n=n_{x}+n_{y}$ have the same energy. That equation corresponds to the diagonal line in the figure. There are $2 \times$ Area $/(1 \times 1)=n^{2}$ states inside the triangle. So, when $E_{F}=\hbar \omega_{c}(n+1)$, there are $N=n^{2}$ occupied states. So, $E_{F}=\hbar \omega_{c}(\sqrt{N}+1)$.
(c) There are $2 n d n$ states between n and $n+d n$. So, the total energy becomes

$$
U=\int_{0}^{\sqrt{N}} \hbar \omega_{c}(n+1) 2 n d n \approx \frac{2}{3} \hbar \omega_{c} N^{3 / 2}
$$

2.(a) Ordering the total angular momentum states in the sequence $|00\rangle|11\rangle|10\rangle|1-1\rangle$,

state	probability	expansion	vector
$\|\uparrow \uparrow\rangle$	$1 / 4$	$\|11\rangle$	$\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)^{T}$
$(\|\uparrow \uparrow\rangle+i\|\downarrow \downarrow\rangle) / \sqrt{2}$	$1 / 4$	$(\|11\rangle+i\|1-1\rangle) / \sqrt{2}$	$\left(\begin{array}{l}0 \\ \frac{1}{\sqrt{2}}\end{array} 0 \frac{i}{\sqrt{2}}\right)^{T}$
$(\|\uparrow \downarrow\rangle-\|\downarrow \uparrow\rangle) / \sqrt{2}$	$1 / 2$	$\|00\rangle$	$(10000)^{T}$

(b)

$$
\rho=\frac{1}{4}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0 \\
\frac{i}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{lll}
0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{-i}{\sqrt{2}}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{3}{8} & 0 & \frac{-i}{8} \\
0 & 0 & 0 & 0 \\
0 & \frac{i}{8} & 0 & \frac{1}{8}
\end{array}\right)
$$

Easy to check that $\operatorname{Tr}(\rho)=1$.
(c)

$$
\left[L^{2}\right]=\operatorname{Tr}\left(\rho L^{2}\right)=\operatorname{Tr}\left[\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{3}{8} & 0 & \frac{-i}{8} \\
0 & 0 & 0 & 0 \\
0 & \frac{i}{8} & 0 & \frac{1}{8}
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) \hbar^{2}\right]=\operatorname{Tr}\left(\begin{array}{cccc}
0 & \cdot & \cdot & \cdot \\
\cdot & \frac{3}{4} & \cdot & \cdot \\
\cdot & \cdot & 0 & \cdot \\
\cdot & \cdot & \cdot & \frac{1}{4}
\end{array}\right) \hbar^{2}=\hbar^{2}
$$

(d)

$$
\left[L_{z}\right]=\operatorname{Tr}\left(\rho L_{z}\right)=\operatorname{Tr}\left[\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{3}{8} & 0 & \frac{-i}{8} \\
0 & 0 & 0 & 0 \\
0 & \frac{i}{8} & 0 & \frac{1}{8}
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \hbar\right]=\operatorname{Tr}\left(\begin{array}{cccc}
0 & \cdot & \cdot & \cdot \\
\cdot & \frac{3}{8} & \cdot & \cdot \\
\cdot & \cdot & 0 & \cdot \\
\cdot & \cdot & \cdot & \frac{-1}{8}
\end{array}\right) \hbar=\frac{\hbar}{4}
$$

3. (a) $\iiint\left|R_{10}(r) Y_{1}^{0}(\theta, \phi)\right|^{2} \sin \theta d \theta d \phi r^{2} d r=A^{2} \int_{0}^{\infty} \exp (-2 r / a) r^{2} d r=A^{2} 2!/(2 / a)^{3} \Longrightarrow A=2 a^{-3 / 2}$ (b) $E_{10}^{(1)}=A^{2} \int_{0}^{\infty} V_{o} \exp (-2 r / a-r / D) r^{2} d r=V_{o} A^{2} 2!/[(2 / a)+1 / D]^{3}=V_{o} /(1+a / 2 D)^{3}$
(c) When $D \rightarrow \infty$, one is left with a constant potential V_{o}, which trivially shifts all energies by that amount.
