Final Exam Solutions Fall 2023

1. (a)
$$A^{\dagger} = (XP_xX)^{\dagger} = X^{\dagger}P_x^{\dagger}X^{\dagger} = XP_xX = A$$
, so A is Hermitian.
(b) $[A, X] = XP_xX^2 - X^2P_xX = X(XP_x + \underbrace{[P_x, X]}_{-i\hbar})X - X^2P_xX = -i\hbar X^2$

(c) $\langle n | A | n \rangle = \langle n | X P_x X | n \rangle = \langle n | \frac{x_o}{2} (a_+ + a_-) \frac{p_o}{2} (a_- - a_+) \frac{x_o}{2} (a_+ + a_-) | n \rangle = 0$ because none of the product terms (each of which will contain three a_{\pm} operators) can contain equal numbers of a_+ and a_- operators.

2. First, notice that
$$L_{+} |1,0\rangle = \hbar\sqrt{2} |1,1\rangle$$
 and $L_{-} |1,1\rangle = \hbar\sqrt{2} |1,0\rangle$.
We also have $L_{x} = (L_{+} + L_{-})/2$ and $L_{y} = (L_{+} - L_{-})/2i$.
(a) $\langle L_{z} \rangle_{\psi} = \left(\langle 1,1| - \langle 1,0| \rangle \right) L_{z} \left(|1,1\rangle - |1,0\rangle \right)/2 = \hbar(1+0)/2 = \hbar/2$
(b) $\langle L_{x} \rangle_{\psi} = \left(\langle 1,1| - \langle 1,0| \rangle \right) (L_{+} + L_{-}) \left(|1,1\rangle - |1,0\rangle \right)/4 = \hbar(-\sqrt{2} - \sqrt{2})/4 = -\hbar/\sqrt{2}$
(c) $\langle L_{y} \rangle_{\psi} = \left(\langle 1,1| - \langle 1,0| \rangle \right) (L_{+} - L_{-}) \left(|1,1\rangle - |1,0\rangle \right)/4i = \hbar(-\sqrt{2} + \sqrt{2})/4i = 0$

3. Remember that $|\uparrow\rangle = (|\uparrow_x\rangle + |\downarrow_x\rangle)/\sqrt{2}$ and $|\downarrow\rangle = (|\uparrow_x\rangle - |\downarrow_x\rangle)/\sqrt{2}$

$$|1,0\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)\frac{1}{\sqrt{2}}$$

$$= \left[\underbrace{\left(|\uparrow_x\rangle + |\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}}_{|\uparrow\rangle} \cdot \underbrace{\left(|\uparrow_x\rangle - |\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}}_{|\downarrow\rangle} + \underbrace{\left(|\uparrow_x\rangle - |\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}}_{|\downarrow\rangle} \cdot \underbrace{\left(|\uparrow_x\rangle + |\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}}_{|\uparrow\rangle} \cdot \underbrace{\left(|\uparrow_x\rangle + |\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}}_{|\uparrow\rangle} \right] \frac{1}{\sqrt{2}}$$

$$= \left(|\uparrow_x\uparrow_x\rangle - |\downarrow_x\downarrow_x\rangle\right)\frac{1}{\sqrt{2}}$$

So, a measurement of S_x will result in <u>same</u> values $(\pm \hbar/2 \text{ with equal probabilities})$ for both particles. That is because unlike the $|0,0\rangle$ state, $|1,0\rangle$ state is not spherically symmetric.