Final Exam Solutions
Bilkent University
Fall 2023
Phys 325

1. (a) $A^{\dagger}=\left(X P_{x} X\right)^{\dagger}=X^{\dagger} P_{x}^{\dagger} X^{\dagger}=X P_{x} X=A$, so A is Hermitian.
(b) $[A, X]=X P_{x} X^{2}-X^{2} P_{x} X=X(X P_{x}+\underbrace{\left[P_{x}, X\right]}_{-i \hbar}) X-X^{2} P_{x} X=-i \hbar X^{2}$
(c) $\langle n| A|n\rangle=\langle n| X P_{x} X|n\rangle=\langle n| \frac{x_{o}}{2}\left(a_{+}+a_{-}\right) \frac{p_{o}}{2}\left(a_{-}-a_{+}\right) \frac{x_{o}}{2}\left(a_{+}+a_{-}\right)|n\rangle=0$ because none of the product terms (each of which will contain three $a_{ \pm}$operators) can contain equal numbers of a_{+}and a_{-}operators.
2. First, notice that $L_{+}|1,0\rangle=\hbar \sqrt{2}|1,1\rangle$ and $L_{-}|1,1\rangle=\hbar \sqrt{2}|1,0\rangle$.

We also have $L_{x}=\left(L_{+}+L_{-}\right) / 2$ and $L_{y}=\left(L_{+}-L_{-}\right) / 2 i$.
(a) $\left\langle L_{z}\right\rangle_{\psi}=(\langle 1,1|-\langle 1,0|) L_{z}(|1,1\rangle-|1,0\rangle) / 2=\hbar(1+0) / 2=\hbar / 2$
(b) $<L_{x}>_{\psi}=(\langle 1,1|-\langle 1,0|)\left(L_{+}+L_{-}\right)(|1,1\rangle-|1,0\rangle) / 4=\hbar(-\sqrt{2}-\sqrt{2}) / 4=-\hbar / \sqrt{2}$
(c) $\left.<L_{y}\right\rangle_{\psi}=(\langle 1,1|-\langle 1,0|)\left(L_{+}-L_{-}\right)(|1,1\rangle-|1,0\rangle) / 4 i=\hbar(-\sqrt{2}+\sqrt{2}) / 4 i=0$
3. Remember that $|\uparrow\rangle=\left(\left|\uparrow_{x}\right\rangle+\left|\downarrow_{x}\right\rangle\right) / \sqrt{2}$ and $|\downarrow\rangle=\left(\left|\uparrow_{x}\right\rangle-\left|\downarrow_{x}\right\rangle\right) / \sqrt{2}$

$$
\begin{aligned}
|1,0\rangle & =(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \frac{1}{\sqrt{2}} \\
& =[\underbrace{\left(\left|\uparrow_{x}\right\rangle+\left|\downarrow_{x}\right\rangle\right) \frac{1}{\sqrt{2}}}_{|\uparrow\rangle} \cdot \underbrace{\left(\left|\uparrow_{x}\right\rangle-\left|\downarrow_{x}\right\rangle\right) \frac{1}{\sqrt{2}}}_{|\downarrow\rangle}+\underbrace{\left(\left|\uparrow_{x}\right\rangle-\left|\downarrow_{x}\right\rangle\right) \frac{1}{\sqrt{2}}}_{|\downarrow\rangle} \cdot \underbrace{\left(\left|\uparrow_{x}\right\rangle+\left|\downarrow_{x}\right\rangle\right) \frac{1}{\sqrt{2}}}_{|\uparrow\rangle}] \frac{1}{\sqrt{2}} \\
& =\left(\left|\uparrow_{x} \uparrow_{x}\right\rangle-\left|\downarrow_{x} \downarrow_{x}\right\rangle\right) \frac{1}{\sqrt{2}}
\end{aligned}
$$

So, a measurement of S_{x} will result in same values ($\pm \hbar / 2$ with equal probabilities) for both particles. That is because unlike the $|0,0\rangle$ state, $|1,0\rangle$ state is not spherically symmetric.

