Homework 6^{1}

A total charge Q is uniformly distributed over the surface of a sphere of radius R . The sphere rotates about the z-axis with angular velocity ω. The magnetic field of this construction has been calculated, and is known to be

$$
\vec{B}= \begin{cases}\vec{B}_{\text {in }}=b_{o} \omega \hat{z} & \text { if } r<R, \\ \vec{B}_{\text {out }}=\left(b_{o} \omega R^{3} / 2 r^{3}\right)(2 \cos \theta \hat{r}+\sin \theta \hat{\theta}) & \text { if } r>R\end{cases}
$$

where

$$
b_{o}=\frac{\mu_{o}}{4 \pi} \frac{2}{3} \frac{Q}{R}
$$

(a) Calculate the electric field \vec{E} for this charge density.
(b) Find the Poynting vector $\vec{S}=\vec{E} \times \vec{B} / \mu_{o}$ at all points in space.
(c) Consider the case where $d \omega / d t=\alpha \neq 0$. Calculate the Faraday induced electric field (magnitude and direction) at the surface of the sphere as a function of θ.
(d) Calculate the torque this induced electric field produces on the sphere.
(e) Remember that the quantity $\vec{\wp}=\mu_{o} \epsilon_{o} \vec{S}$ is the momentum density in space. From the symmetry of this quantity, can you guess what the total momentum imparted to the accelerating sphere will be? Why?
(f) The quantity $\vec{\ell}=\vec{r} \times \vec{\wp}$ is the angular momentum density. From the symmetry of $\vec{\ell}$ can you guess what the direction of the total angular momentum imparted to the accelerating sphere will be? Why? (Result of part (d) should be a hint.)
(g) Integrate this component of $\vec{\ell}$ to find the total angular momentum being imparted to the sphere and show that it is consistent with the result of part (d).

[^0]
[^0]: ${ }^{1}$ This problem was inspired by an exam question in the MIT Open Courseware: https://ocw.mit.edu/courses/8-07-electromagnetism-ii-fall-2012/resources/mit8_07f12_finalexam/

