First Exam Solutions
Spring 2023 Bilkent University
1.(a) $\oint \vec{E} \cdot \overrightarrow{d l}=-d / d t \int \vec{B} \cdot \overrightarrow{d S} \Longrightarrow E \cdot(2 \pi R \sin \theta)=b_{o} \alpha \cdot \pi(R \sin \theta)^{2} \Longrightarrow E=b_{o} \alpha R \sin \theta / 2$

Lenz Law: $\vec{E}=-E \hat{\phi}$
(b) Torque on strip of width $R d \theta$ is $\left.d \tau=(E Q R \sin \theta)(R d \theta)(2 \pi R \sin \theta) / 4 \pi R^{2}\right)$
$\tau=\int d \tau=\left(b_{o} \alpha Q R^{2} / 4\right) \int_{0}^{\pi} \sin ^{3} \theta d \theta=\left(b_{o} \alpha Q R^{2} / 4\right) \int_{-1}^{1}\left(1-x^{2}\right) d x=b_{o} \alpha Q R^{2} / 3$
2. (a) Inside: Uniform field $\Rightarrow U_{\text {in }}=\left(b_{o} \omega\right)^{2}\left(4 \pi R^{3} / 3\right) / 2 \mu_{o}$

Outside: $U_{\text {out }}=\iint\left(B^{2} / 2 \mu_{o}\right) \cdot 2 \pi \sin \theta r^{2} d \theta d r=\left(b_{o} \omega R^{3} / 2\right)^{2} \int_{R}^{\infty} d r \int_{0}^{\pi} d \theta\left(4 \cos ^{2} \theta+\sin ^{2} \theta\right) 2 \pi \sin \theta /\left(2 r^{4} \mu_{o}\right)$

$$
=\left(2 \pi / 2 \mu_{o}\right)\left(b_{o} \omega R^{3} / 2\right)^{2}\left(1 / 3 R^{3}\right) \int_{-1}^{1}\left[4 x^{2}+\left(1-x^{2}\right)\right] d x=\left(2 \pi / 2 \mu_{o}\right)\left(b_{o} \omega / 2\right)^{2}\left(R^{3} / 3\right)(4)=(1 / 2) U_{\text {in }}
$$

$U_{\text {total }}=(3 / 2) U_{\text {in }}=I_{\text {mag }} \omega^{2} / 2$ with $I_{\text {mag }}=3 b_{o}^{2}\left(4 \pi R^{3} / 3\right) / 2 \mu_{o}$
(b) $\vec{\ell}=\epsilon_{o} \vec{r} \times(\vec{E} \times \vec{B})$ The electric field exists only for $r>R$. Since \vec{E} is in the \hat{r} direction,
$\vec{E} \times \vec{B}=E\left(b_{o} \omega R^{3} / 2 r^{3}\right) \sin \theta \hat{\phi}$ and $\vec{\ell}=\epsilon_{o} r E\left(b_{o} \omega R^{3} / 2 r^{3}\right) \sin \theta(-\hat{\theta})$ due to symmetry, we need $\ell_{z}=\ell \sin \theta$. Inserting $E=Q /\left(4 \pi \epsilon_{o} r^{2}\right)$, we get $\ell_{z}=\epsilon_{o} Q /\left(4 \pi \epsilon_{o}\right)\left(b_{o} \omega R^{3} / 2 r^{4}\right) \sin ^{2} \theta$. Integrating,
$L_{z}=\int_{R}^{\infty} r^{2} d r \int_{0}^{\pi} 2 \pi \sin \theta d \theta \ell_{z}=(Q / 2)\left(b_{o} \omega R^{3} / 2\right) \int_{R}^{\infty} d r \int_{0}^{\pi} \sin ^{3} \theta / r^{2} d \theta$
$=(Q / 2)\left(b_{o} \omega R^{3} / 2\right)(1 / R) \int_{-1}^{1}\left(1-x^{2}\right) d x=(Q / 2)\left(b_{o} \omega R^{2} / 2\right)(4 / 3)\left(12 \pi R b_{o} / 2 Q \mu_{o}\right)$
The last term is equal to 1 due to the definition of b_{o}. Then, $L_{z}=3 b_{o}^{2}\left(4 \pi R^{3} / 3\right) \omega / 2 \mu_{o}=\omega I_{\text {mag }}$
3. $\nabla \times \vec{B}=\mu \vec{J}+\mu \epsilon \partial \vec{E} / \partial t \Longrightarrow-\nabla^{2} \vec{B}=\nabla \times(\mu \sigma+\mu \epsilon \partial / \partial t) \vec{E}$
$\Longrightarrow-\nabla^{2} \vec{B}=-(\mu \sigma+\mu \epsilon \partial / \partial t) \partial \vec{B} / \partial t \Longrightarrow k^{2}=\mu \epsilon \omega^{2}+i \omega \mu \sigma$ also take $k_{o}^{2}=\mu \epsilon_{o} \omega^{2}$ and $k=k_{R}+i k_{I}$ $\nabla \times \vec{E}=-\partial \vec{B} / \partial t \Longrightarrow i \vec{k} \times \vec{E}=i \omega \vec{B} \Longrightarrow E=(\omega / k) B$

Assume all E_{I}, E_{R} and E_{T} in the same direction. $H_{I},-H_{R}$ and H_{T} will need to assumed in the same direction. Boundary conditions for these tangential fields will yield:
$E_{I}+E_{R}=E_{T}$ and $H_{I}-H_{R}=H_{T} \Longrightarrow B_{I}-B_{R}=B_{T}$ (μ 's are same in two media)

$$
\Longrightarrow\left(E_{I}-E_{R}\right)(k / \omega)=E_{T}\left(k_{o} / \omega\right) \Longrightarrow 2 E_{I}=\left(1+k_{o} / k\right) E_{T} \Longrightarrow E_{T}=2 E_{I} /\left(1+k_{o} / k\right)
$$

Average power incident at the boundary $\bar{S}_{I}=\operatorname{Re} \vec{E}_{I} \times \vec{B}_{I}^{*} / 2 \mu=\operatorname{Re} E_{I}\left(k E_{I} / \omega\right)^{*} / 2 \mu=\left(k_{R} / 2 \mu \omega\right)\left|E_{I}\right|^{2}$
Average power transmitted at the boundary: $\bar{S}_{T}=\operatorname{Re} \vec{E}_{T} \times \vec{B}_{T}^{*} / 2 \mu=\operatorname{Re} E_{T}\left(k_{o} E_{T} / \omega\right)^{*} / 2 \mu$

$$
=\operatorname{Re} 4\left(k_{o} / 2 \mu \omega\right)\left|E_{I}\right|^{2} /\left|1+k_{o} / k\right|^{2}
$$

Ratio: $\bar{S}_{T} / \bar{S}_{I}=4\left(k_{o} / k_{R}\right) /\left|1+k_{o} / k\right|^{2}$

