Final Exam Solutions
Spring 2023

Bilkent University
Phys 316

1. (a) We will use $\nabla \cdot \vec{M}=-\rho_{m}$ and $\vec{M} \cdot \hat{n}=\sigma_{m}$ : Noting that $\partial / \partial x\left[x \sqrt{x^{2}+y^{2}+z^{2}}\right]=x^{2} / r+r$, we have $\nabla \cdot \vec{M}=\nabla \cdot \beta r \vec{r}=4 \beta r=4 \beta r=-\rho_{m}$ and a surface charge density $\sigma_{m}=\left.\vec{M} \cdot \hat{n}\right|_{R}=\beta R^{2}$
(b) This magnetic charge density results in (from Gauss's Law)
$\int H d S=\int_{0}^{r} \rho_{m} d^{3} r \Longrightarrow H 4 \pi r^{2}=-\int_{0}^{r}(4 \beta r)\left(4 \pi r^{2}\right) d r=-16 \beta \pi\left(r^{4} / 4\right) \Longrightarrow \vec{H}=-\beta r^{2} \hat{r}$ for $r<R$ and $H 4 \pi r^{2}=-\int_{0}^{R}(4 \beta r)\left(4 \pi r^{2}\right) d r+\beta 4 \pi R^{4}=0$ for $r>R$ (The volume and surface contributions cancel.)
(c) We then have $\vec{B}=\mu_{o}(\vec{M}+\vec{H})=0$ for both inside and outside the sphere. This is a peculiarity of the sprerically symmetric geometry. (This result is more readily apparent if you consider the "bound currents" associated with the magnetisation: The current densities $\vec{J}_{b}=\nabla \times \vec{M}$ and $\vec{K}_{b}=\vec{M} \times\left.\hat{n}\right|_{S}$ are both zero.)
2.(a) The surface current is $K=\sigma v=\sigma \omega R$. The field inside the cylinder will be axial and have the magnitude $B=\mu_{o} K=\mu_{o} \sigma \omega R$.
(b) Magnetic flux $\Phi_{B}$ will be $B \pi r^{2}$ inside and $B \pi R^{2}$ outside the cylinder. The induced EMF $\varepsilon$ (at radius $R$ ) will have the magnitude $\varepsilon=(2 \pi R) E=d \Phi_{B} / d t=\left(\mu_{o} \sigma \alpha R\right)\left(\pi R^{2}\right) \Longrightarrow E=\mu_{o} \sigma \alpha R^{2} / 2$.
(c) Torque will be equal to the moment arm distance $R$ times the total charge at $R$ multiplied by the induced electric field: $\tau=R(\sigma 2 \pi R L)\left(\mu_{o} \sigma \alpha R^{2} / 2\right)=\pi \mu_{o} \alpha R^{4} \sigma^{2} L$.
2. In the $S^{\prime}$ reference frame, on the $x^{\prime}$ axis, there is only a magnetic field in the $y^{\prime}$ direction: Ampre's Law implies $\vec{B}=\mu_{o} I_{o} \hat{y}^{\prime} /\left(2 \pi x^{\prime}\right)$

$$
\begin{aligned}
& F=\left(\begin{array}{rrrr}
0 & -c \epsilon_{o} E_{1} & -c \epsilon_{o} E_{2} & -c \epsilon_{o} E_{3} \\
c \epsilon_{o} E_{1} & 0 & -B_{3} / \mu_{o} & B_{2} / \mu_{o} \\
c \epsilon_{o} E_{2} & B_{3} / \mu_{o} & 0 & -B_{1} / \mu_{o} \\
c \epsilon_{o} E_{3} & -B_{2} / \mu_{o} & B_{1} / \mu_{o} & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & I_{o} /\left(2 \pi x^{\prime}\right) \\
0 & 0 & 0 \\
0 & -I_{o} /\left(2 \pi x^{\prime}\right) & 0 \\
0
\end{array}\right) \\
&\left(\begin{array}{rrrr}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_{o} /\left(2 \pi x^{\prime}\right) \\
0 & 0 & 0 & 0 \\
0 & -I_{o} /\left(2 \pi x^{\prime}\right) & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{cccc}
0 & 0 & 0 & \gamma \beta I_{o} /\left(2 \pi x^{\prime}\right) \\
0 & 0 & 0 & \gamma I_{o} /\left(2 \pi x^{\prime}\right) \\
0 & 0 & 0 & 0 \\
-\gamma \beta I_{o} /\left(2 \pi x^{\prime}\right) & -\gamma I_{o} /\left(2 \pi x^{\prime}\right) & 0 & 0
\end{array}\right)
\end{aligned}
$$

We also have $\binom{c t^{\prime}}{x^{\prime}}=\gamma\left(\begin{array}{rr}1 & -\beta \\ -\beta 1 & \end{array}\right)\binom{c t}{x} \Longrightarrow x^{\prime}=\gamma(-c \beta t+x)=\gamma(x-v t)$
We then have a magnetic field $B_{y} / \mu_{o}=\gamma I_{o} /\left(2 \pi x^{\prime}\right)=\gamma I_{o} /[2 \pi \gamma(x-v t)] \Longrightarrow B_{y}=\mu_{o} I_{o} /[2 \pi(x-v t)]$ and an electric field $c \epsilon_{o} E_{z}=-\gamma \beta I_{o} /\left(2 \pi x^{\prime}\right) \Longrightarrow E_{z}=I_{o}(\beta c)\left(1 / c^{2} \epsilon_{o}\right) /(x-v t)=I_{o} v \mu_{o} /(x-v t)$

