Final Exam Solutions Fall 2023

1.(a) The image will be at z = -a, and will have the same magnitude, and will also point in the +z direction.

(b) Since $\vec{E} = (3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p})/4\pi\epsilon_o r^3$, we will have $\vec{E}(z) = 2p_o\hat{z}/[4\pi\epsilon_o(z+a)^3]$. (c) Since \vec{E} and \vec{p} are in the same direction, torque on the dipole will be zero. (d) Since $\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E}$, we have $\vec{F} = p_o (\partial/\partial z \ \vec{E})_{(0,0,a)} = -\hat{z}3p_o^2/(32\pi\epsilon_o a^4)$. The x and y components of the field are proportional to x and y respectively and do not contribute to the force at (0, 0, a).

2. (a) $\rho_{\text{bound}} = -\nabla \cdot \vec{P} = -\partial/\partial z \ \alpha z = -\alpha.$ (b) $\sigma_{\text{bound}} = \vec{P} \cdot \hat{r}|_{S} = P(R, \theta) \ \hat{z} \cdot \hat{r} = \alpha \underbrace{R \cos(\theta)}_{z} \cdot \underbrace{\cos(\theta)}_{\hat{z} \cdot \hat{r}}$ (c) Since $P_2(x) = (3x^2 - 1)/2$, we have $x^2 = (2P_2(x) + 1)/3$ so that $\sigma_{\text{bound}} = \alpha R \cos^2(\theta) = \alpha R[2P_2(\cos \theta) + P_0(\cos \theta)]/3.$ (d) We will have only l = 0 and l = 2 contributions:

$$V_{\text{in}}(r,\theta) = A_0 + A_2 r^2 P_2(\cos\theta)$$
 $V_{\text{out}}(r,\theta) = B_0/r + B_2 P_2(\cos\theta)/r^3$

with the boundary conditions

$$V_{\text{in}}(r,\theta)|_{r=R} = V_{\text{out}}(r,\theta)|_{r=R} \quad \text{and} \quad \underbrace{\left(-\frac{\partial}{\partial r}V_{\text{out}}(r,\theta)\right)_{r=R}}_{\hat{r}\cdot E_{\text{out}}} - \underbrace{\left(-\frac{\partial}{\partial r}V_{\text{in}}(r,\theta)\right)_{r=R}}_{\hat{r}\cdot E_{\text{in}}} = \sigma/\epsilon_o$$

which results in

$$A_0 = B_0/R \qquad A_2 R^2 = B_2/R^3$$
$$B_0/R^2 = \alpha R/3\epsilon_o \qquad 3B_2/R^4 + 2A_2R = 2\alpha R/3\epsilon_o$$
so that $B_0 = \alpha R^3/3\epsilon_o$, $A_0 = \alpha R^2/3\epsilon_o$, $B_2 = 2\alpha R^5/15\epsilon_o$ and $A_2 = 2\alpha/15\epsilon_o$

3. (a) Using superposition, and noting that the selenoidal current produces a magnetic field only inside the cylinder, ve obtain the field structure $\vec{B} = \hat{z}\mu_o K$ for $a < \rho < b$ and zero elsewhere.

(b) Applying $\oint_c \vec{A} \cdot \vec{dl} = \int_S \vec{B} \cdot \vec{dS}$ to the blue surface S (bounded by the co-axial circle C with radius ρ) in the figure,

$$\oint_c \vec{A} \cdot \vec{dl} = A_{\phi} 2\pi\rho = \begin{cases} 0 & \text{for } \rho < a \\ B\pi(\rho^2 - a^2) & \text{for } a < \rho < b \\ B\pi(b^2 - a^2) & \text{for } \rho > b \end{cases}$$

(c) Noticing that \vec{A} is in the ϕ direction, and a function of ρ only, the only term that will give a finite contribution is $\vec{B} = \hat{z}_{\rho \partial \rho}^1 (\rho A_{\phi})$. From the form of ρA_{ϕ} it is quite apparent that one will get zero unless $a < \rho < b$, and the differentiation will then give \vec{B} found in part (a).