1.(a) The image will be at $z=-a$, and will have the same magnitude, and will also point in the $+z$ direction.
(b) Since $\vec{E}=(3(\vec{p} \cdot \hat{r}) \hat{r}-\vec{p}) / 4 \pi \epsilon_{o} r^{3}$, we will have $\vec{E}(z)=2 p_{o} \hat{z} /\left[4 \pi \epsilon_{o}(z+a)^{3}\right]$.
(c) Since \vec{E} and \vec{p} are in the same direction, torque on the dipole will be zero.
(d) Since $\vec{F}=(\vec{p} \cdot \vec{\nabla}) \vec{E}$, we have $\vec{F}=p_{o}(\partial / \partial z \vec{E})_{(0,0, a)}=-\hat{z} 3 p_{o}^{2} /\left(32 \pi \epsilon_{o} a^{4}\right)$.

The x and y components of the field are proportional to x and y respectively and do not contribute to the force at $(0,0, a)$.
2. (a) $\rho_{\text {bound }}=-\nabla \cdot \overrightarrow{\mathrm{P}}=-\partial / \partial z \alpha z=-\alpha$.
(b) $\sigma_{\text {bound }}=\left.\overrightarrow{\mathrm{P}} \cdot \hat{r}\right|_{S}=\mathrm{P}(R, \theta) \hat{z} \cdot \hat{r}=\alpha \underbrace{R \cos (\theta)}_{z} \cdot \underbrace{\cos (\theta)}_{\hat{z} \cdot \hat{r}}$
(c) Since $P_{2}(x)=\left(3 x^{2}-1\right) / 2$, we have $x^{2}=\left(2 P_{2}(x)+1\right) / 3$
so that $\sigma_{\text {bound }}=\alpha R \cos ^{2}(\theta)=\alpha R\left[2 P_{2}(\cos \theta)+P_{0}(\cos \theta)\right] / 3$.
(d) We will have only $l=0$ and $l=2$ contributions:

$$
V_{\text {in }}(r, \theta)=A_{0}+A_{2} r^{2} P_{2}(\cos \theta) \quad V_{\text {out }}(r, \theta)=B_{0} / r+B_{2} P_{2}(\cos \theta) / r^{3}
$$

with the boundary conditions

$$
\left.V_{\text {in }}(r, \theta)\right|_{r=R}=\left.V_{\text {out }}(r, \theta)\right|_{r=R} \quad \text { and } \quad \underbrace{\left(-\frac{\partial}{\partial r} V_{\text {out }}(r, \theta)\right)_{r=R}}_{\hat{r} \cdot E_{\text {out }}}-\underbrace{\left(-\frac{\partial}{\partial r} V_{\text {in }}(r, \theta)\right)_{r=R}}_{\hat{r} \cdot E_{\text {in }}}=\sigma / \epsilon_{o}
$$

which results in

$$
\begin{array}{ll}
A_{0}=B_{0} / R & A_{2} R^{2}=B_{2} / R^{3} \\
B_{0} / R^{2}=\alpha R / 3 \epsilon_{o} & 3 B_{2} / R^{4}+2 A_{2} R=2 \alpha R / 3 \epsilon_{o}
\end{array}
$$

so that $B_{0}=\alpha R^{3} / 3 \epsilon_{o}, \quad A_{0}=\alpha R^{2} / 3 \epsilon_{o}, \quad B_{2}=2 \alpha R^{5} / 15 \epsilon_{o} \quad$ and $\quad A_{2}=2 \alpha / 15 \epsilon_{o}$
3. (a) Using superposition, and noting that the selenoidal current produces a magnetic field only inside the cylinder, ve obtain the field structure $\vec{B}=\hat{z} \mu_{o} K$ for $a<\rho<b$ and zero elsewhere.
(b) Applying $\oint_{c} \vec{A} \cdot \overrightarrow{d l}=\int_{S} \vec{B} \cdot \overrightarrow{d S}$ to the blue surface S (bounded by the co-axial circle C with radius ρ) in the figure,

$$
\oint_{c} \vec{A} \cdot \overrightarrow{d l}=A_{\phi} 2 \pi \rho= \begin{cases}0 & \text { for } \rho<a \\ B \pi\left(\rho^{2}-a^{2}\right) & \text { for } a<\rho<b \\ B \pi\left(b^{2}-a^{2}\right) & \text { for } \rho>b\end{cases}
$$

(c) Noticing that \vec{A} is in the ϕ direction, and a function of ρ only, the only term that will give a finite contribution is $\vec{B}=\hat{z} \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\phi}\right)$. From the form of ρA_{ϕ} it is quite apparent that one will get zero unless $a<\rho<b$, and the differentiation will then give \vec{B} found in part (a).

