1. Potential at large ρ due to the electric field will be $-E_{o} x=-E_{o} \rho \cos \phi$. We have solutions of type

$$
V(\rho, \phi)=-E_{o} \rho \cos \phi+\sum_{m} A_{m} \rho^{-m} \cos (m \phi)
$$

outside of the cylinder. Other ρ^{+m} and $\ln \rho$ solutions are not appropriate because they would not satisfy the BC at large ρ, and $\sin (m \phi)$ solutions are not present because they are odd in ϕ and the source (the external field) produces only an even term in ϕ.
The BC at $\rho=R$ results in $E_{o} R \cos \phi+\sum_{m} A_{m} R^{-m} \cos (m \phi)=0$ so that we have

$$
\begin{array}{ll}
-E_{o}+A_{1} / R=0 & \text { for } m=1 \\
A_{m} / R^{m}=0 & \text { for } m>1 \quad \Longrightarrow \quad \text { all } A_{m}=0 \text { for } m>1 .
\end{array}
$$

So, the solution for the potential is $V(\rho, \phi)=E_{o}\left(R^{2} / \rho-\rho\right) \cos \phi$.
2.See first exam solutions.
3. Remember that $1 /(1+\epsilon)=1-\epsilon+\epsilon^{2}-\epsilon^{3}+\epsilon^{4} \cdots$.
(a) $V(z)=\frac{q}{4 \pi \epsilon_{o}}\left(-\frac{2}{z}+\frac{1}{z+a}+\frac{1}{z-a}\right)$
(b) $\quad=\frac{q}{4 \pi \epsilon_{o} z}\left(-2+\frac{1}{1+a / z}+\frac{1}{1-a / z}\right)$
$=\frac{q}{4 \pi \epsilon_{o} z}\left(-2+\left[1-\frac{a}{z}+\left(\frac{a}{z}\right)^{2}-\left(\frac{a}{z}\right)^{3}+\left(\frac{a}{z}\right)^{4}+\cdots\right]+\left[1+\frac{a}{z}+\left(\frac{a}{z}\right)^{2}+\left(\frac{a}{z}\right)^{3}+\left(\frac{a}{z}\right)^{4}+\cdots\right]\right)$
$=\frac{q}{2 \pi \epsilon_{o} z}\left(\left(\frac{a}{z}\right)^{2}+\left(\frac{a}{z}\right)^{4}+\cdots\right)$
(c) $V(r, \theta)=\frac{q}{2 \pi \epsilon_{o} r}\left(\left(\frac{a}{r}\right)^{2} P_{2}(\cos \theta)+\left(\frac{a}{r}\right)^{4} P_{4}(\cos \theta)+\cdots\right)$

Note that the first term in the expansion corresponds to the quadruple term.

