1.Potential at large ρ due to the electric field will be $-E_o x = -E_o \rho \cos \phi$. We have solutions of type

$$V(\rho,\phi) = -E_o\rho\cos\phi + \sum_m A_m\rho^{-m}\cos(m\phi)$$

outside of the cylinder. Other ρ^{+m} and $\ln \rho$ solutions are not appropriate because they would not satisfy the BC at large ρ , and $\sin(m\phi)$ solutions are not present because they are odd in ϕ and the source (the external field) produces only an even term in ϕ . The BC at $\rho = R$ results in $E_o R \cos \phi + \sum_m A_m R^{-m} \cos(m\phi) = 0$ so that we have

$$-E_o + A_1/R = 0 \quad \text{for } m = 1$$

$$A_m/R^m = 0 \quad \text{for } m > 1 \implies \text{all } A_m = 0 \text{ for } m > 1.$$

So, the solution for the potential is $V(\rho, \phi) = E_o(R^2/\rho - \rho) \cos \phi$.

2.See first exam solutions.

3. Remember that $1/(1+\epsilon) = 1 - \epsilon + \epsilon^2 - \epsilon^3 + \epsilon^4 \cdots$.

(a)
$$V(z) = \frac{q}{4\pi\epsilon_o} \left(-\frac{2}{z} + \frac{1}{z+a} + \frac{1}{z-a} \right)$$

(b) $= \frac{q}{4\pi\epsilon_o z} \left(-2 + \frac{1}{1+a/z} + \frac{1}{1-a/z} \right)$
 $= \frac{q}{4\pi\epsilon_o z} \left(-2 + \left[1 - \frac{a}{z} + \left(\frac{a}{z} \right)^2 - \left(\frac{a}{z} \right)^3 + \left(\frac{a}{z} \right)^4 + \cdots \right] + \left[1 + \frac{a}{z} + \left(\frac{a}{z} \right)^2 + \left(\frac{a}{z} \right)^3 + \left(\frac{a}{z} \right)^4 + \cdots \right] \right)$
 $= \frac{q}{2\pi\epsilon_o z} \left(\left(\frac{a}{z} \right)^2 + \left(\frac{a}{z} \right)^4 + \cdots \right)$
(c) $V(r, \theta) = \frac{q}{2\pi\epsilon_o r} \left(\left(\frac{a}{r} \right)^2 P_2(\cos \theta) + \left(\frac{a}{r} \right)^4 P_4(\cos \theta) + \cdots \right)$

Note that the first term in the expansion corresponds to the quadruple term.