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1.(a) Total charge = 0 =⇒ ρ [4πR3/3] = −σ [4πR2] =⇒ σ = −ρR/3
(b) For a spherically symmetric potential, you can use the Gauss’s Law, which will give
you the result that the electric field at any radius will be equivalent to the electric field
E produced by a point charge (with magnitude equal to the amount of charge contained
within that radius) at the center of the sphere. Since we are given that the total charge
is zero, we have
E = 0 for r > R.
For r < R we have E = (ρ4πr3/3)/(4π εor

2) = ρr/(3εo).
For the electric potential, we integrate this field with respect to r to r =∞ (where V=0):
V (r) =

∫∞
r 0 · dr + V (∞) = 0 for R < r <∞.

V (r) =
∫ R
r ρr/(3εo)dr + V (R) = ρ(R2 − r2)/(6εo) for 0 < r < R.

2.(a) Charge on inner surface of cavity is −q.
(b) Since the total sphere is uncharged, charge on the outer surface is +q.
(d) Inside the cavity, force on q is equivalent to the force on its image:

Fq =
q(rq/a)

4πεo(r2/a− a)2
(towards right).

From the outside, the sphere looks like a equipotential with a total charge +q on its
surface. We can find the force on the external charge Q as a superposition of the forces
between Q and its image

FQ1 =
Q(−RQ/b)

4πεo(b−R2/b)2
(towards left)

and the force between Q and a central charge q +RQ/b to achieve total charge q:

FQ2 =
Q(q +RQ/b)

4πεob2
(towards right).

(e) The total force on the external charge Q is FQ = FQ1 + FQ2.
(c) Due to Newton’s third law, force on the conductor is opposite to those
on the charges: FC = −FQ − Fq.

3.(a) Potential due to a uniformly charged ring or radius r at a distance d on its axis is
Q/(4πεo

√
r2 + d2). Potential due to a uniformly charged disc of radius R at a distance d

on its axis may be found by integrating over rings:

V (d) =
∫ R

0

σ2πrdr

4πεo
√
r2 + d2

=
σ

4εo

∫ ···
···

du√
u

=
σ

4εo

√
u

1/2

∣∣∣∣∣
···

···
=

σ

2εo

√
r2 + d2

∣∣∣r=R
r=0

=
σ

2εo

[√
R2 + d2 − d

]
.

So, the potential at +a due to the disk +a is σR
2εo

the potential at +a due to the disk at −a is − σ
2εo

[√
R2 + 4a2 − 2a

]
(a) Potential difference will be twice the sum of these potentials: ∆V = σ

εo

[
R + 2a−

√
R2 + 4a2

]
.

(b) In the limit a/R becomes very small,
√
R2 + 4a2 ∼ R so that ∆V ∼ 2aσ/εo.

(Note that in this limit the problem reduces to an infinite parallel plate capacitor.)


