Final Exam Solutions
Spring 2022
1.(a) $\rho_{b}=-\nabla \cdot \vec{P}=-\partial P_{x} / \partial x=-\alpha$.
(b) $\sigma_{b}=\vec{P} \cdot \hat{S}=\vec{P} \cdot(\hat{x} \cos \phi+\hat{y} \sin \phi)=\alpha x \cos \phi=\alpha R \cos ^{2} \phi=\alpha R(1+\cos 2 \phi) / 2$ note that there will be only $m=0$ and $m=2$ terms in the potential.
(c) $V=A_{o}+A_{2} \rho^{2} \cos 2 \phi$ inside and $V=B_{o}+B_{2} / \rho^{2} \cos 2 \phi+C \ln \rho$ outside.
(Choose $A_{o}=0$.) Boundary condition matching at $\rho=R$:
Potential:
$A_{2} R^{2} \cos 2 \phi=B_{o}+B_{2} / R^{2} \cos 2 \phi+C \ln R \Longrightarrow B_{o}+C \ln R=0$ and $A_{2} R^{2}=B_{2} / R^{2}$
Field:
$-\left(\partial V_{\text {out }} / \partial \rho-\partial V_{\text {in }} / \partial \rho\right)_{\rho=R}=\sigma_{b} / \epsilon_{o}$
$\Longrightarrow\left(2 B_{2} / R^{3}+2 A_{2} R\right) \cos 2 \phi-C / R=\alpha R(1+\cos 2 \phi) / 2 \epsilon_{o}$
$\Longrightarrow 2 B_{2} / R^{3}+2 A_{2} R=\alpha R / 2 \epsilon_{o}$ and $C / R=-\alpha R / 2 \epsilon_{o}$
we get
$C=-\alpha R^{2} / 2 \epsilon_{o}, B_{o}=\left(\alpha R^{2} / 2 \epsilon_{o}\right) \ln R, A_{2}=\alpha / 8 \epsilon_{o}$ and $B_{2}=\alpha R^{4} / 8 \epsilon_{o}$
so that
$V_{\text {in }}=\rho^{2} \alpha / 8 \epsilon_{o} \cos 2 \phi$ and $V_{\text {out }}=-\left(\alpha R^{2} / 2 \epsilon_{o}\right) \ln (\rho / R)+\left(\alpha R^{4} / 8 \rho^{2} \epsilon_{o}\right) \cos 2 \phi$
Actually, the potential due to the bound volume charge will cancel the $m=0$ term.
2.(a) Using Ampre's law around the straight wire, $2 \pi y B=\mu_{o} I_{1} \Longrightarrow B=\mu_{o} I_{1} / 2 \pi y$. The field will be in the $+z$ direction for $y>0$ and $-z$ direction for $y<0 . \Longrightarrow \vec{B}=\hat{z} \mu_{o} I_{1} / 2 \pi y$ (b) $\overrightarrow{d l} \times \vec{B}$ has $+y$ components at all points on the loop. The x-components cancel for symmetric poins at $x \rightarrow-x$. The net force on the loop is going to be in the $+y$ direction.
(c) $\vec{F}=I_{2} \int \overrightarrow{d l} \times \vec{B}=I_{2} \int R d \phi(-\hat{x} \sin \phi+\hat{y} \cos \phi) \times \hat{z} \mu_{o} I_{1} /(2 \pi R \sin \phi)$
$=\mu_{o} I_{1} I_{2} / 2 \pi \int(\hat{y}+\hat{x} \cos \phi / \sin \phi) d \phi=\hat{y} \mu_{o} I_{1} I_{2}$ The \hat{x} integral is zero due to the odd integrand, as was discussed in part (b).
3. (a) Applying Ampere's law for a loop inside the inner wire at radius ρ, $B 2 \pi \rho=\mu_{o} I_{\mathrm{enc}}=\mu_{o} I \pi \rho^{2} / \pi a^{2} \Longrightarrow \vec{B}_{\mathrm{in}}=\hat{\phi} \mu_{o} I \rho /\left(2 \pi a^{2}\right)$
(b) For $a<\rho<b: B 2 \pi \rho=\mu_{o} I_{\text {enc }}=\mu_{o} I \Longrightarrow \vec{B}_{\text {mid }}=\hat{\phi} \mu_{o} I /(2 \pi \rho)$
(c) Current is in the $\pm z$ directrion, so \vec{A} is expected to be in that direction as well. This is consistent with a perpendicular magnetic field in the $\hat{\phi}$ direction. We can use the magnetic field and the relation $\oint_{c} \vec{A} \cdot \overrightarrow{d l}=\int \vec{B} \cdot \overrightarrow{d S}$. Choosing a loop which contains part of the z-axis (of length l) and another line segment in -z-direction at radius ρ, we can find the vector potential at ρ :
$-A l=\Phi_{B}=\int_{0}^{a} B_{\mathrm{in}} l d \rho+\int_{a}^{\rho} B_{\mathrm{mid}} l d \rho=\left(\mu_{o} I l / 2 \pi\right)\left(\int_{0}^{a} \rho / a^{2} d \rho+\int_{a}^{\rho} d \rho / \rho\right)$
$\Longrightarrow \vec{A}=-\hat{z}\left(\mu_{o} I / 2 \pi\right)[1 / 2+\ln (\rho / R)]$
(Note the - sign due to the application of right-hand rule for the contour C and the surface S.)
(d) Since we only have the A_{z} component, the relative terms in the curl are: $\nabla \times \vec{A}(\rho, \phi, z)=\hat{\rho}(1 / \rho) \partial A_{z} / \partial \phi-\hat{\phi} \partial A_{z} / \partial \rho=\hat{\phi} \mu_{o} I / 2 \pi \rho$ as consistent with part (b).

