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MÜFİT SEZER

Abstract. We consider a finite dimensional indecomposable modular repre-

sentation of a cyclic p-group and we give a recursive description of an associated

separating set: We show that a separating set for a representation can be ob-
tained by adding to a separating set for any subrepresentation some explicitly

defined invariant polynomials. Meanwhile, an explicit generating set for the

invariant ring is known only in a handful of cases for these representations.

introduction

Let V denote a finite dimensional representation of a group G over a field F . The
induced action on the dual space V ∗ extends to the symmetric algebra S(V ∗). This
is a polynomial algebra in a basis of V ∗ and we denote it by F [V ]. The action of σ ∈
G on f ∈ F [V ] is given by (σf)(v) = f(σ−1v) for v ∈ V . The subalgebra in F [V ] of
polynomials that are left fixed under the action of the group is denoted by F [V ]G. A
classical problem is to determine the invariant ring F [V ]G for a given representation.
This is, in general a difficult problem because the invariant ring becomes messier
if one moves away from the groups generated by reflections and the degrees of the
generators often get very big. A subset A ⊆ F [V ]G is said to be separating for V
if for any pair of vectors u,w ∈ V , we have: If f(u) = f(w) for all f ∈ A, then
f(u) = f(w) for all f ∈ F [V ]G. Separating invariants have been a recent trend in
invariant theory as a better behaved weakening of generating invariants. Although
distinguishing between the orbits with invariants has been an object of study since
the beginning of invariant theory, there has been a recent resurgence of interest in
them which is initiated by Derksen and Kemper [6]. Since then, there have been
several papers with the theme that one can get separating subalgebras with better
constructive properties which make them easier to obtain than the full invariant
ring. For instance there is always a finite separating set [6, 2.3.15.] and Noether’s
bound holds for separating invariants independently of the characteristic of the
field [6, 3.9.14.]. Separating invariants also satisfy important efficiency properties
in decomposable representations, see [8], [9] and [10]. Obtaining a generating set for
the invariant ring is particularly difficult in the modular case, i.e., when the order of
the group is divisible by the characteristic of the field. Even in the simplest situation
of a representation of a cyclic group of prime order p over a field of characteristic p,
an explicit generating set is known only in very limited cases. On the other hand
a separating set is constructed for every such representation in [22]. We will tell
more about modular representations shortly.
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There has been also some interest in the question whether one can have better
ring theoretical properties by passing to a separating subalgebra. In [12] it is shown
that there may exist a regular (resp. complete intersection) separating subalgebra
where the invariant ring is not regular (resp. complete intersection). But some
recent results [11] and [14] suggest that, in general, separating subalgebras do not
provide substantial improvements in terms of the Cohen-Macaulay defect.

We recommend [6, 2.3.2, 3.9.4] and [17] for more background and motivation on
separating invariants. The textbooks [1], [6] and [20] are good sources as general
references in invariant theory.

In this paper we study separating invariants for representations of a cyclic p-
group Zpr over a field of characteristic p. Although these representations are easy
to describe the corresponding invariant ring is difficult to obtain. A major dif-
ficulty is that, as shown by Richman [21], the degrees of the generators increase
unboundedly as the dimension of the representation increases. Actually for r = 1,
the maximal degree of a polynomial in a minimal generating set for the invariant
ring of any representation is known, see [16]. Nevertheless explicit generating sets
are available only for handful of cases. The invariants of the two and the three di-
mensional indecomposable representations of Zp were computed by Dickson [7] at
the beginning of the twentieth century. After a long period without progress Shank
[23] obtained the invariants of the four and the five dimensional indecomposable
representations using difficult computations that involved S.A.G.B.I. bases. Find-
ing generating invariants for higher dimensional indecomposable representations
remain open. As for decomposable representations, the invariants for copies of
the two dimensional indecomposable representation were computed by Campbell
and Hughes [3], see also [5]. The adoption of S.A.G.B.I. bases method that was
introduced by Shank also helped to resolve a couple of special cases where each
indecomposable summand has dimension at most three, see [2], [13] and [25]. For
r = 2 much less is known: Shank and Wehlau gave a generating set for the invari-
ants of the p + 1 dimensional indecomposable representation [24]. Also in [19], a
bound for the degrees of generators that apply to all indecomposable representa-
tions of Zp2 was obtained. As a polynomial in p, this bound is of degree two and
together with the bounds for Zp it gives support for a general conjecture on the
degrees of the generators of modular invariants of Zpr , see [19]. Meanwhile, for
r > 2, to the best of our information, no explicit description of a generating set
exists for the invariants of any faithful representation.

Despite these complications concerning the modular generating invariants, sep-
arating invariants have been revealed to be remarkably better behaved. In [18] a
separating set is constructed using only transfers and norms for any modular rep-
resentation of any p-group. These are invariant polynomials that are obtained by
taking orbit sums and orbit products. They are easy to obtain and it is known that
they do not suffice to generate the invariant ring even when the group is cyclic.
Unfortunately the size of the set in [18] is infinite. In [22] the focus is restricted
to representations of Zp and more explicit results are obtained. More precisely, it
is shown that a separating set for a representation can be obtained by adding, to
a separating set of a certain subrepresentation, some explicitly described invariant
polynomials. This result is special to separating invariants and express their dis-
tinction from generating invariants in several directions. First of all, knowing the
invariants of subrepresentations is not critically useful in building up a generating
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set for higher dimensional representations. Practically, it is equally difficult to get
a generating set for the invariants of a representation even when one is supplied
with the invariants of its subrepresentations. Also the construction in [22] yields a
separating set for any representation that consists of polynomials of degree one or p
and the size of this set depends only on the dimension of the representation. On the
other hand, the size of a generating set depends also on the order of the group and
the degrees of the generators are somewhat randomly distributed. Moreover, each
polynomial in this separating set depends on variables from at most two indecom-
posable summands in the representation, whereas a minimal generating set must
contain a polynomial that involves a variable from every non-trivial indecomposable
summand, see [16].

The purpose of this paper is to generalize the construction in [22] to all modular
indecomposable representations of an arbitrary cyclic p-group. Since the dual of
a subrepresentation still sits in the duals of higher dimensional representations for
cyclic p-groups (we will be more precise about this in the next section), the strategy
of building on separating sets for subresentations carry over to this generality. This
allows us to reduce to the case of separating two vectors whose coordinates are all
the same except the coordinate corresponding to the fixed point space. In the upper
triangular basis this is the first coordinate. Then we split the pairs according to
the length of the tails of zeros in their coordinates. It turns out that, for an integer
j ≥ 1, all pairs of vectors (in different orbits) whose j-th coordinates are non-
zero and higher coordinates are zero can be separated by the same polynomial.
While this polynomial is simply a transfer of a single monomial of degree p in
the Zp case for j > 2, one needs to take a large relative transfer of a certain
product of norms with respect the right subgroup in the general treatment. The
choice of the subgroup depends on the modulo p expansion of j. Since we are
using this polynomial to separate vectors that have a tail of zeros of the same
length , we compute this polynomial modulo the vanishing ideal of the vector space
corresponding to the tail. This is the most difficult part of the proof. If the third
and higher coordinates are all zero in this pair, then the norm of the linear form
corresponding to the first coordinate separates the pair. Hence we obtain a set of
invariants that connect separating sets of two indecomposable representations of
consecutive dimensions. By induction this yields an explicit (finite) separating set
for all indecomposable representations. This set has nice constructive features as
in the case of Zp. From the construction it can be read off that the size of the
separating set depends only on the dimension of the representation. Moreover, the
maximal degree of a polynomial in this set is the group order pr and there are
pr−1 + 1 possibilities for the degree of a polynomial in this set.

Constructing separating invariants

Let p > 0 be a prime number and F be a field of characteristic p. Let G denote
the cyclic group of order pr, where r is a non-negative integer. We fix a generator
σ of G. It is well known that there are exactly pr indecomposable representations
V1, V2, . . . , Vpr of G up to isomorphism where σ acts on Vn for 1 ≤ n ≤ pr by a
Jordan block of dimension n with ones on the diagonal. Let e1, e2, . . . , en be the
Jordan block basis for Vn with σ(ei) = ei + ei−1 for 2 ≤ i ≤ n and σ(e1) = e1.
We identify each ei with the column vector with 1 on the i-th coordinate and zero
elsewhere. Let x1, x2, . . . , xn denote the corresponding elements in the dual space
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V ∗n . Since V ∗n is indecomposable it is isomorphic to Vn. In fact, x1, x2, . . . , xn forms
a Jordan block basis for V ∗n in the reverse order: We have σ−1(xi) = xi + xi+1

for 1 ≤ i ≤ n − 1 and σ−1(xn) = xn. Since σ−1 generates G as well, we write σ
for σ−1 for the rest of the paper. Note also that F [Vn] = F [x1, x2, . . . , xn]. Pick
a column vector (c1, c2, . . . , cn)t in Vn, where ci ∈ F for 1 ≤ i ≤ n. There is a
G-equivariant surjection Vn → Vn−1 given by (c1, c2, . . . , cn)t → (c2, c3 . . . , cn)t.
We use the convention that V0 is the zero representation. Dual to this surjection,
the subspace in V ∗n generated by x2, x3, . . . , xn is closed under the G-action and is
isomorphic to V ∗n−1. Hence F [Vn−1] = F [x2, x3, . . . , xn] is a subalgebra in F [Vn].
For 0 ≤ m ≤ r, let Gm denote the subgroup of G of order pm which is generated by
σp

r−m
. For f ∈ F [Vn], define NGm(f) =

∏
0≤l≤pm−1 σ

lpr−m(f) and for simplicity
we write NG(f) for NGr (f). Also for f ∈ F [Vn]Gm , define the relative transfer
TrGGm(f) =

∑
0≤l≤pr−m−1 σ

l(f). Notice that NGm(f) ∈ F [Vn]Gm and TrGGm(f) ∈
F [Vn]G. For a positive integer i, Let Ii denote the ideal in F [Vn] generated by
xi, xi+1, . . . , xn if 1 ≤ i ≤ n and let Ii denote the zero ideal if i > n. Since the
vector space generated by xi, xi+1, . . . , xn is closed under the G-action, Ii is also
closed under the G-action.

Let 3 ≤ j ≤ n be an integer with pk−1 + 1 < j ≤ pk + 1, where k is a positive
integer. We define the polynomial

H(j) = TrGGr−k
(
(NGr−k(x1))

∏
0≤i≤k−1

(NGr−k(xj−pi))p−1).

It turns out that this polynomial is the right generalization of the polynomial in [22,
Lemma 2] for our purposes. Our main task before the proof of the main theorem is
to compute this polynomial modulo the ideal Ij+1. We start with a couple of well
known results.

Lemma 1. i) Let a be a positive integer. Then
∑

0≤l≤p−1 l
a ≡ −1 mod p if

p− 1 divides a and
∑

0≤l≤p−1 l
a ≡ 0 mod p, otherwise.

ii) Let s, t be integers with modulo p expansions t = amp
m + am−1p

m−1 + · · ·+ a0

and s = bmp
m + bm−1p

m−1 + · · ·+ b0, where 0 ≤ ai, bi ≤ p− 1 for 1 ≤ i ≤ m.
Then

(
t
s

)
≡
∏

0≤i≤m
(
ai
bi

)
mod p.

Proof. We direct the reader to [4, 9.4] for a proof of the first statement and to [15]
for a proof of the second statement. �

From now on all equivalences are modulo Ij+1 unless otherwise stated.

Lemma 2. We have the following equivalences.

i) NGr−k(xj−pi) ≡ xp
r−k

j−pi for 0 ≤ i ≤ k − 1.

ii) NGr−k(x1) ≡

{
xp

r−k

1 if j 6= pk + 1

xp
r−k

1 − xp
r−k−1

1 x
(p−1)pr−k−1

1+pk
if j = pk + 1.

Proof. Let 1 ≤ m ≤ n be an integer. We first claim that NGr−k(xm) ≡ xp
r−k

m

mod Im+pk . Since σp
k

(xm) = xm + pkxm+1 +
(
pk

2

)
xm+2 · · · , by the previous

lemma we have σp
k

(xm) = xm + xm+pk . Therefore for 0 ≤ l ≤ pr−k − 1, we get
σlp

k

(xm) = xm+ lxm+pk +
(
l
2

)
xm+2pk + · · · ≡ xm mod Im+pk . Since NGr−k(xm) =∏

0≤l≤pr−k−1 σ
lpk(xm), we obtain the claim.
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From the claim we have NGr−k(xj−pi) ≡ xp
r−k

j−pi mod Ij−pi+pk . But since
Ij−pi+pk is contained in Ij+1, the first statement of the lemma follows. Similarly,

if j 6= pk + 1, then NGr−k(x1) ≡ xp
r−k

1 because Ipk+1 is contained in Ij+1. On
the other hand, if j = pk + 1, then σlp

k

(x1) = x1 + lx1+pk +
(
l
2

)
x1+2pk + · · · ≡

x1 + lx1+pk and therefore NGr−k(x1) ≡
∏

0≤l≤pr−k−1(x1 + lx1+pk). Furthermore,∏
0≤l≤pr−k−1(x1 + lx1+pk) ≡ (

∏
0≤l≤p−1(x1 + lx1+pk))p

r−k−1
. But it is well known

that
∏

0≤l≤p−1(x1 + lx1+pk) = xp1 − x1x
p−1
1+pk

, see for instance [7]. It follows that

NGr−k(x1) ≡ xp
r−k

1 − xp
r−k−1

1 x
(p−1)pr−k−1

1+pk
. �

For simplicity we put X = (
∏

0≤i≤k−1(NGr−k(xj−pi))p−1).

Lemma 3. There exists f ∈ F [x2, x3, . . . , xn] such that

H(j) ≡ NGr−k(x1) TrGGr−k(X) + f.

Proof. We claim that for 0 ≤ l ≤ pk − 1 there exists gl ∈ F [x2, x3, . . . , xn] such
that σl(NGr−k(x1)) ≡ NGr−k(x1) + gl. First assume that j 6= pk + 1. Then by the

previous lemma we have NGr−k(x1) ≡ xp
r−k

1 . Since this equivalence is preserved
under the action of the group we get

σl(NGr−k(x1)) ≡ xp
r−k

1 + (lx2)p
r−k

+
(( l

2

)
x3

)pr−k + · · ·

= xp
r−k

1 + lxp
r−k

2 +
(
l

2

)
xp

r−k

3 + · · · .

Hence we can choose gl = lxp
r−k

2 +
(
l
2

)
xp

r−k

3 + · · · . Next assume that j = pk + 1.

By the previous lemma again, we have NGr−k(x1) ≡ xp
r−k

1 − xp
r−k−1

1 x
(p−1)pr−k−1

1+pk
.

Similarly we get

σl(NGr−k(x1)) ≡ (xp
r−k

1 + lxp
r−k

2 + · · · )− (xp
r−k−1

1 + lxp
r−k−1

2 + · · · )x(p−1)pr−k−1

1+pk
,

where we used σl(x(p−1)pr−k−1

1+pk
) ≡ x

(p−1)pr−k−1

1+pk
. Therefore we can choose gl =

(lxp
r−k

2 +
(
l
2

)
xp

r−k

3 + · · · )− (lxp
r−k−1

2 +
(
l
2

)
xp

r−k−1

3 + · · · )(x(p−1)pr−k−1

1+pk
). This estab-

lishes the claim. It follows that

H(j) =
∑

0≤l≤pk−1

σl(NGr−k(x1)X) =
∑

0≤l≤pk−1

σl(NGr−k(x1))σl(X)

≡
∑

0≤l≤pk−1

(NGr−k(x1))σl(X) +
∑

0≤l≤pk−1

glσ
l(X)

= NGr−k(x1) TrGGr−k(X) +
∑

0≤l≤pk−1

glσ
l(X).

Notice that the smallest index of a variable in X is j−pk−1 which is strictly bigger
than one. So X lies in F [x2, x3, . . . , xn] as well. Hence the result follows. �

We turn our attention to the polynomial TrGGr−k(X). By Lemma 2 we have

TrGGr−k(X) ≡
∑

0≤l≤pk−1

σl(
∏

0≤i≤k−1

(xj−pi)p
r−k(p−1)).
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We set
T =

∑
0≤l≤pk−1

σl(
∏

0≤i≤k−1

(xj−pi)p
r−k(p−1)).

For 0 ≤ m ≤ k(p−1)−1, write m = am(p−1)+bm, where am, bm are non-negative
integers with 0 ≤ bm < p−1. Define wm,0 = (xj−pam )p

r−k
and for an integer t ≥ 0,

set wm,t = (xj−pam+t)p
r−k

. Note that we have∏
0≤i≤k−1

(xj−pi)p
r−k(p−1) =

∏
0≤m≤k(p−1)−1

wm,0.

For a k(p− 1)-tuple α = [α(0), α(1), . . . , α(k(p− 1)− 1)] ∈ Nk(p−1), define

wα =
∏

0≤m≤k(p−1)−1

wm,α(m).

Next lemma shows that T can be written as a linear combination of wα’s.

Lemma 4. We have T =
∑
wα∈Nk(p−1) cαwα, where

cα =
∑

0≤l≤pk−1

( ∏
0≤m≤k(p−1)−1

(
l

α(m)

))
.

Proof. We have

T =
∑

0≤l≤pk−1

σl(
∏

0≤i≤k−1

(xj−pi)p
r−k(p−1))

=
∑

0≤l≤pk−1

(
∏

0≤i≤k−1

(σl(xj−pi))p
r−k(p−1))

=
∑

0≤l≤pk−1

(
∏

0≤i≤k−1

(xj−pi + lxj−pi+1 +
(
l

2

)
xj−pi+2 + . . . )p

r−k(p−1))

=
∑

0≤l≤pk−1

(
∏

0≤i≤k−1

(xp
r−k

j−pi + lxp
r−k

j−pi+1 +
(
l

2

)
xp

r−k

j−pi+2 + . . . )p−1)

=
∑

0≤l≤pk−1

(
∏

0≤m≤k(p−1)−1

(wm,0 + lwm,1 +
(
l

2

)
wm,2 + . . . )).

Hence we get the result. �

Let α′ denote the k(p−1)-tuple such that α′(m) = pam for 0 ≤ m ≤ k(p−1)−1.
Notice that wα′ = x

pr−kk(p−1)
j . We show that T is in fact equivalent to a scalar

multiple of this monomial modulo Ij+1.

Lemma 5. We have cα′ 6= 0. Moreover, T ≡ cα′wα′ .

Proof. Let α ∈ Nk(p−1) with wα /∈ Ij+1. We have α(m) − pam ≤ 0 for all 0 ≤
m ≤ k(p − 1) − 1, because otherwise wm,α(m) = (xj−pam+α(m))p

r−k ∈ Ij+1. But
since m ≤ k(p − 1) − 1, we have am ≤ k − 1 and therefore α(m) ≤ pk−1 for all
0 ≤ m ≤ k(p− 1)− 1. In particular it follows that the modulo p expansion of α(m)
contains at most k digits. For 0 ≤ m ≤ k(p−1)−1 and 0 ≤ l ≤ pk−1 , let α(m) =
α(m)k−1p

k−1 + α(m)k−2p
k−2 + · · · + α(m)0 and l = lk−1p

k−1 + lk−2p
k−2 + · · · l0
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denote the modulo p-expansions of α(m) and l, respectively. From Lemma 1 and
Lemma 4 we have

cα =
∑

0≤l≤pk−1

( ∏
0≤m≤k(p−1)−1

(
l

α(m)

))
=

∑
0≤lt≤p−1, 0≤t≤k−1

( ∏
0≤m≤k(p−1)−1

(
lk−1p

k−1 + lk−2p
k−2 + · · ·

α(m)k−1pk−1 + α(m)k−2pk−2 + · · ·

))
=

∑
0≤lt≤p−1, 0≤t≤k−1

( ∏
0≤m≤k(p−1)−1

(
lk−1

α(m)k−1

)(
lk−2

α(m)k−2

)
· · ·
(

l0
α(m)0

))
.

We compute cα′ from this identity as follows. Note that as m varies from 0 to
k(p − 1) − 1, α′(m) takes on values 1, p, . . . , pk−1 and that each value is taken
precisely p− 1 times. Therefore we get∏

0≤m≤k(p−1)−1

(
lk−1

α′(m)k−1

)(
lk−2

α′(m)k−2

)
· · ·
(

l0
α′(m)0

)
= lp−1

k−1l
p−1
k−2 · · · l

p−1
0 .

Therefore cα′ =
∑

0≤lt≤p−1, 0≤t≤k−1 l
p−1
k−1l

p−1
k−2 · · · l

p−1
0 = (−1)k 6= 0 by Lemma 1.

To prove the second statement assume that cα 6= 0 (and wα /∈ Ij+1). We
have already observed that α(m) ≤ pk−1 for all 0 ≤ m ≤ k(p − 1) − 1. In fact,
the inequality α(m) − pam ≤ 0 for 0 ≤ m ≤ k(p − 1) − 1 tells us more: For
m ≤ (k− 1)(p− 1)− 1 we have am ≤ k− 2 and therefore α(m) ≤ pk−2. Putting all
this information together, we see that α(m)k−1 ≤ 1 for 0 ≤ m ≤ k(p − 1) − 1 and
α(m)k−1 = 0 for 0 ≤ m ≤ (k − 1)(p − 1) − 1. Now we arrange the terms in cα to
get

cα = A ·
∑

0≤lk−1≤p−1

( ∏
0≤m≤k(p−1)−1

(
lk−1

α(m)k−1

)
),

where

A =
∑

0≤lt≤p−1, 0≤t≤k−2

( ∏
0≤m≤k(p−1)−1

(
lk−2

α(m)k−2

)
· · ·
(

l0
α(m)0

)
).

Since α(m)k−1 = 0 for 0 ≤ m ≤ (k − 1)(p− 1)− 1, we have

cα = A ·
∑

0≤lk−1≤p−1

( ∏
(k−1)(p−1)≤m≤k(p−1)−1

(
lk−1

α(m)k−1

)
).

On the other hand, since α(m)k−1 is at most one for (k−1)(p−1) ≤ m ≤ k(p−1)−1
we get ∏
(k−1)(p−1)≤m≤k(p−1)−1

(
lk−1

α(m)k−1

)
=

{
lp−1
k if α(m)k−1 = 1 for (k − 1)(p− 1) ≤ m
g otherwise,

where g is a polynomial of degree strictly less than p− 1 (as a polynomial in lk−1).
Since cα 6= 0, it follows from Lemma 1 that α(m)k−1 = 1 for (k−1)(p−1) ≤ m. So
α(m) = pam for (k−1)(p−1) ≤ m or equivalently α(m) = pk−1 for (k−1)(p−1) ≤
m. We determine the rest of the coordinates of α along the same way. From
cα 6= 0 we have A 6= 0. Since α(m) = pk−1 for (k − 1)(p − 1) ≤ m it follows that
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α(m)k−2 = α(m)k−3 = · · · = α(m)0 = 0 for (k − 1)(p − 1) ≤ m, and therefore we
get

A =
∑

0≤lt≤p−1, 0≤t≤k−2

( ∏
0≤m≤(k−1)(p−1)−1

(
lk−2

α(m)k−2

)
· · ·
(

l0
α(m)0

)
).

The argument that was used to compute α(m) for (k − 1)(p − 1) ≤ m applies to
α(m) for (k− 2)(p− 1) ≤ m ≤ (k− 1)(p− 1)− 1 as well because from the condition
α(m)− pam ≤ 0 we get α(m) ≤ pk−2 for m ≤ (k − 1)(p− 1)− 1 and α(m) ≤ pk−3

for m ≤ (k − 2)(p− 1)− 1. Repeating this argument and losing lt at each step for
0 ≤ t ≤ k − 2, one gets that α(m) = pam for 0 ≤ m ≤ k(p− 1)− 1. Hence α = α′

as desired. �

Lemma 6. Let v1 = (a, b, 0, . . . , 0)t and v2 = (c, b, 0, . . . , 0)t be two vectors in Vn
in different G-orbits. Then NG(x1) separates v1 and v2.

Proof. Note that NG(x1)(v1) = (
∏

0≤l≤pr−1 σ
l(x1))(v1) =

∏
0≤l≤pr−1 x1(σl(v1)) =∏

0≤l≤pr−1(a + lb) = (
∏

0≤l≤p−1 a + lb)p
r−1

. Similarly, we have NG(x1)(v2) =

(
∏

0≤l≤p−1 c + lb)p
r−1

. Since taking p-th powers is one to one in F , it suffices to
show that

∏
0≤l≤p−1(a+ lb) 6=

∏
0≤l≤p−1(c+ lb). Note that a 6= c because v1 6= v2.

Therefore we may assume that b 6= 0, because otherwise
∏

0≤l≤p−1(a+ lb) = ap 6=
cp =

∏
0≤l≤p−1(c + lb). We define a polynomial Q(x) =

∏
0≤l≤p−1(x + lb) ∈ F [x].

we have Q(a) =
∏

0≤l≤p−1(a + lb) and Q(c) =
∏

0≤l≤p−1(c + lb). Notice also that
Q(a) = Q(a+b) = Q(a+2b) = · · · = Q(a+(p−1)b). Hence a, a+b, · · · , a+(p−1)b
is a set of distinct roots to the equation Q(x) = Q(a). It follows that these are
the only roots because Q(x) is a polynomial of degree p. Therefore if Q(a) = Q(c),
then we have c = a + tb for some 0 ≤ t ≤ p − 1, or equivalently σt(v1) = v2. This
is a contradiction because v1 and v2 are in different orbits. �

Theorem 7. Let 1 < n ≤ pr be an integer and S ⊆ F [Vn−1]G be a separating set
for Vn−1, then S together with NG(x1) and H(j) for 3 ≤ j ≤ n is a separating set
for Vn.

Proof. Let v1 = (c1, c2, . . . , cn)t and v2 = (d1, d2, . . . , dn)t be two vectors in Vn
in different G-orbits. If (c2, c3, . . . , cn)t and (d2, d3, . . . , dn)t are in different G-
orbits in Vn−1, then there exists a polynomial in S that separates these vectors
by assumption. Hence this polynomial separates v1 and v2 as well. Therefore
we may assume that ci = di for 2 ≤ i ≤ n by replacing (d2, d3, . . . , dn)t with a
suitable element in its orbit. So we have c1 6= d1. First assume that there exists
an integer 3 ≤ j ≤ n such that cj = dj 6= 0. We may also assume that j is the
largest such integer. We show that H(j) separates v1 and v2 as follows. Assume
the notation of Lemma 3. Since ci = di = 0 for i ≥ j + 1, by Lemma 3 it is
enough to show that NGr−k(x1) TrGGr−k(X) + f separates v1 and v2. But since
f ∈ F [x2, . . . , xn], we have f(v1) = f(v2). Moreover, by Lemma 4 and Lemma
5 we get TrGGr−k(X)(v1) = TrGGr−k(X)(v2) = cα′c

pr−kk(p−1)
j 6= 0. It follows that

we just need to show that NGr−k(x1) separates v1 and v2. If j 6= pk + 1, then

by Lemma 2 we have NGr−k(x1) ≡ xp
r−k

1 and this polynomial separates v1 and v2
because the first coordinates of v1 and v2 are different. If j = pk + 1, then we have
σp

k

(ej) = ej +e1. So the basis vectors e1, ej span a two dimensional representation
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of Gr−k . Moreover, since v1, v2 are in different G-orbits, c1e1 +cjej and d1e1 +cjej
are also in different Gr−k-orbits. The reason for this is that the basis elements
e1, e2, . . . , ej−1 = epk are fixed by σp

k

and therefore σp
kl(d1e1 + cjej) = c1e1 + cjej

for some l implies that σp
kl(v2) = σp

kl(d1e1 + c2e2 + · · · + cjej) = c1e1 + c2e2 +
· · ·+ cjej = v1 which contradicts that v1 and v2 are in different G-orbits. Hence by
the previous lemma (applied to the group Gr−k) we see that NGr−k(x1) separates
c1e1+cjej and d1e1+cjej . But no variable in {x2, . . . , xj−1} appears in NGr−k(x1).
It follows that NGr−k(x1) separates v1 and v2 as well. Finally, if ci = di = 0 for
3 ≤ i ≤ n, then NG(x1) separates v1 and v2 by the previous lemma. �
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