2D Bloch Wave Optics

or the

Peculiar Properties of Light in periodic media

Philip Russell

Max-Planck Institute for the Science of Light Erlangen, Germany

http://www.ioip.mpg.de/~russell/PC_website/index.htm

Topics

Peculiar Bloch waves nearly free photon model wavevector diagrams anatomy of a Bloch wave negative & positive refraction **Interference**, Green's functions curious focusing device TIR at normal incidence slowness diagrams & diffraction square lattices nclusions

© Philip Russell, MPL, Erlangen

"Nearly free photon" theory

very weak reflection from each Bragg plane

"Nearly free photon" theory

[a.k.a. coupled mode theory]

- at a particular frequency, special values of Bloch wavevector yield:
 - a "magic" combination of amplitudes that "sneaks through" the structure without change
 - these are the Bloch waves

Solutions for a 1-D crystal

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

•

© Philip Russell, MPL, Erlangen

isotropic media

Refraction & reflection

wavevector diagram

Total internal reflection

ray diagram

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
 - negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

•

 \sum

anatomy of a Bloch wave: Real space

group velocity

 $K = 2\pi / \Lambda$

anatomy of a Bloch wave: Reciprocal space

 $K = 2\pi / \Lambda$

Bloch's theorem

$$\Psi(\mathbf{r}, \omega) = \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) \sum_{m} A_{m} \exp(-jm\mathbf{K} \cdot \mathbf{r})$$

$$= \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) P(\mathbf{r}) \qquad |\mathbf{K}| = 2\pi / \Lambda$$

$$= \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) P(\mathbf{r}) \qquad j$$

$$= \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) \qquad j$$

$$= \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) \qquad j$$

$$= \exp(-j\mathbf{k}_{B} \cdot \mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) P(\mathbf{r}) P(\mathbf{r})$$

Bloch waves have *multiple* phase velocities & a *single* group velocity

$$v_{\phi m} = \omega / (k_B + mK)$$
$$\mathbf{v}_g = \nabla_{\mathbf{k}} \omega(\mathbf{k}_B)$$

Bone-structure & face

with flesh

http://tutorialblog.org/skull-face/

without flesh

anatomy of a Bloch wave

© Philip Russell, MPL, Erlangen

Hugely enhanced design freedom ...

magnitude & direction of group & phase velocity can be almost independently controlled

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

•

 \sum

© Philip Russell, MPL, Erlangen

Bloch wave refraction and reflection

Mono-periodic medium

Double negative refraction

$$\mathbf{V}_{ ext{group}} =
abla_{\mathbf{k}} \omega(\mathbf{k})$$

wavevector diagram

Negative & positive refraction

$$\mathbf{V}_{ ext{group}} =
abla_{\mathbf{k}} \omega(\mathbf{k})$$

medium

wavevector diagram

Negative refraction (1983)

- 150 nm sputtered tantala on borosilicate glass
- ~1 dB/cm losses
- enhanced scattering in periodic region

Double negative refraction (1983)

- 150 nm sputtered tantala on borosilicate glass
- ~1 dB/cm losses
- enhanced scattering in periodic region

For reprints see: www.ioip.mpg.de/~russell/PC_website/index.htm/

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
 - curious focusing device
 - TIR at normal incidence
 - slowness diagrams & diffraction
 - square lattices
- Conclusions

•

Double negative refraction

$$\mathbf{V}_{\mathrm{group}} =
abla_{\mathbf{k}} \omega(\mathbf{k})$$

ray diagram

wavevector diagram

Bloch wave interference

Phys Rev A33 (3232-3242) 1986

wavevector diagram

Bloch wave point-influence function

ray diagram

wavevector diagram

Phys Rev A33 (3232-3242) 1986

Bloch wave point-influence function

wavevector diagram

Phys Rev A33 (3232-3242) 1986

Experimental observation

- Pendellösung period 50 µm
- stop-band width 125 per mm
- 100% directional coupler is only 25 µm thick

Experimental observations

Phys Rev A33 (3232-3242) 1986

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

Bloch wave lens

using negative and positive refraction

Bloch wave lens

using negative and positive refraction

Bloch wave lens

using negative and positive refraction

Bloch wave beam expander

Electron. Lett., 20 (72-73) 1984

• miniature optical elements

- two-dimensional resonators
- in-plane 2D lasers
- new kinds of lenses

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device

- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

Total internal reflection at normal incidence

 $\mathbf{v}_g = \nabla_{\mathbf{k}} \omega(\mathbf{k}_B)$

Erice 1993

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
 - square lattices
- Conclusions

 \sum

Diffraction (spatial dispersion)

diffraction wanted?

- Free-space: diffraction is OK but rather limited & isotropic
- Photonic crystals: diffraction can be very strong and anisotropic with multiple beams

Phase velocity is not a vector

"Slowness" vector

 highlights the change in refractive index with frequency and direction

Slowness diagrams for light: TE

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices
- Conclusions

Nearly-free photons in square lattice

$$\varepsilon/\varepsilon_{o} = 1 + M(\cos Kx + \cos Ky)$$

$$E(x, y) = \sum_{m=0}^{\hat{n}} \sum_{n=0}^{\hat{n}} V_{mn} \exp - j \left[((k_{o} + \delta) \cos \theta - mK) x + ((k_{o} + \delta) \sin \theta - nK) y \right]$$

$$q = -\delta(\delta + 2k_{o}) \qquad a_{s} = \frac{4\pi}{\Lambda} \left(\frac{\pi}{\Lambda} - (\delta + k_{o}) \sin \theta \right)$$

$$\begin{bmatrix} q & k_{o}^{2}M/2 & q - a_{s} & k_{o}^{2}M/2 \\ k_{o}^{2}M/2 & q - a_{s} & k_{o}^{2}M/2 & 0 \\ 0 & k_{o}^{2}M/2 & q - a_{s} - a_{c} & k_{o}^{2}M/2 \\ k_{o}^{2}M/2 & 0 & k_{o}^{2}M/2 & q - a_{c} \end{bmatrix} \begin{bmatrix} V_{00} \\ V_{10} \\ V_{10} \\ V_{01} \\ V_{11} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$a_{c} = \frac{4\pi}{\Lambda} \left(\frac{\pi}{\Lambda} - (\delta + k_{o}) \cos \theta \right)$$

Wavevector diagrams in square crystal

Wavevector diagrams in square crystal

convergent rays:

surface "nose" points away from direction of energy flow

divergent rays: surface "nose" points towards direction of energy flow

Negative diffraction in a square-lattice

Zengerle, J. Mod. Opt. 34 (1589-1617) 1987

frequency ω_1

Negative diffraction in a square-lattice

Zengerle, J. Mod. Opt. 34 (1589-1617) 1987

frequency $\overline{\omega_2} > \overline{\omega_1}$

Negative diffraction in a square-lattice

Zengerle, J. Mod. Opt. 34 (1589-1617) 1987

Reinhard Ulrich

- first experiments on metal-wire "meta-materials" – early 1970s
- first experiments on multiplyperiodic planar waveguides ("photonic crystals") – from 1975

Topics

Peculiar Bloch waves

- nearly free photon model
- wavevector diagrams
- anatomy of a Bloch wave
- negative & positive refraction
- interference, Green's functions
- curious focusing device
- TIR at normal incidence
- slowness diagrams & diffraction
- square lattices

Conclusions

http://www.ioip.mpg.de/~russell/PC_website/index.htm

Conclusions

- refractive index vector plays a crucial role in periodic media – usually it is multi-valued
- negative & positive refraction are common in periodic media – often at the same time
- negative diffraction is a common feature of propagation in periodic media
- many negative effects were first reported in the early 1980s in planar periodic waveguides
- since about 1990, periodic optical media have become known as "photonic crystals"

http://www.ioip.mpg.de/~russell/PC_website/index.htm