
1 
 

PHYS 102 EXPERIMENT 2. EQUIPOTENTIALS AND RADIAL ELECTRIC FIELD LINES 

 
 

Objective:  

  

The purpose of this experiment is to study the electric field concept by mapping electric field lines and 

equipotential lines on two oppositely charged concentric rings and two oppositely charged dot 

configurations.  

  

Introduction:  

  

The field concept is very useful in describing interactions between charged particles and objects. The 

electrostatic interaction of two charges can be described in terms of forces, but often it is easier to 

speak of electric fields. By definition, the electric field �⃗⃗�  is the electrostatic force �⃗⃗�  per unit positive 

charge 𝑄:  

  

�⃗⃗� =
�⃗⃗� 

𝑄
 .          (1) 

  

Any charged object is said to establish an electrostatic field in the entire space surrounding it and any 

second charge present in this field experiences a force proportional to the field. If the field is produced 

by a single positive point charge, or positively charged spherically symmetric object, it is directed 

radially outward from its center, decreasing as 1 𝑟2⁄ . If the field source is more complex, the field 

configuration is correspondingly more complex. With the interaction a potential energy can be 

associated, and also a potential energy per unit charge, called the electric the potential. Thus, 

interactions between charges at rest are described in terms of electric field and electric potential. 

When dielectric media or conductors are present, the charge configurations in the materials must also 

be taken into consideration. The strength of the electric field depends on the source charge(s). The 

electric field may be thought of as the force per unit positive test charge that would be exerted before 

the field is disturbed by the presence of the test charge. The direction of the force exerted on a 

negative charge is opposite to that exerted on a positive charge. Because an electric field has both 

magnitude and direction, the direction of the force on a positive charge is chosen arbitrarily as the 

direction of the electric field. Because positive charges repel each other, the electric field around an 

isolated positive charge is oriented radially outward. When represented by lines of force, or field lines, 

electric fields are depicted as starting on positive charges and terminating on negative charges. These 

lines are artificially introduced to visualize the electric field. The lines also indicate the path that a small 

positive test charge would take if placed in their field. A line tangent to a field line indicates the 

direction of the electric field at that point. When the electric field lines are close together, the electric 

field is stronger than when they are farther apart. In other words, the density of the lines is 

proportional to the intensity of the electric field at that region of space. The lines or surfaces drawn 

perpendicular to the electric field lines are called equipotential lines or surfaces, or simply 

equipotentials. An equipotential surface is therefore defined to be the one on which the potential is 

everywhere constant.  
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Figure 1: The electric field lines and corresponnding equipotential lines of positive and negative charges  

  

  

The surface of a sphere having a point charge at its center is an example. In this experiment, we study 

field and potential patterns in the vicinity of electrodes. Each conducting electrode forms an 

equipotential surface and, if a potential difference is imposed on two electrodes, an electric field pattern 

is established in the region between them. Ideally, we would like to be able to measure fields in vacuum 

in the vicinity of deflecting electrodes. Such measurements are possible, but they are difficult and not 

very illuminating to someone who studies electrostatics for the first time. Instead, we shall study a much 

simpler problem, the potential pattern on a high-resistance conductive sheet for various electrode 

configurations. The relation between the potential and field configurations on a two dimensional 

conductive sheet will be further developed in the course of this experiment.  

  

Questions to Think About:  

1. For an arrangement of two point charges: 

a) Is it possible to find two points (neither at infinity) where �⃗⃗� = 0? 

b) Is it possible to find an off-axis point (not at infinity) where �⃗⃗� = 0? What conditions are 

required? Explain. 

 

2. Is it possible for two or more different equipotential surfaces to intersect? 

  

  

 Equipment:  

  

The following equipment will be supplied;  

 A multimeter; 

 A 30 V DC power supply; 

 Conductive carbon sheet; 

 Cable sets. 

  

The following items must be brought by you and will not be supplied.  

 A ruler; 

 A scientific calculator; 

 A pair of compasses. 
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Procedure:  

  

PART A: 

1. Using metal pushpins mount the given conductive carbon paper onto the corkboard. 

2. Set up the circuit given in Fig. 2 where the negative terminal of the power supply is connected 

to the inner ring and positive terminal to the outer ring. Apply 20 V between the inner and 

outer rings. Then, connect one of the probes of the voltmeter to a terminal of the power supply. 

The remaining free probe will serve for tracing and recording the electric potential in the region 

between the rings. 

3. Divide the 4.5 cm separation between the inner and outer ring into 0.5 cm intervals. 

4. Measure and record the potential values as a function of radius at equal intervals of 0.5 cm 

starting from the inner circle. Tabulate your data in Table 1. 

5. Since you measured the potential at discrete points compute the average field over successive 

intervals and for that use the Lagrange’s formula for numerical differentiation. Hence, calculate 

the electric field as a derivative of V (E=dV/dr) numerically, using Eq. 2 and fill in Table 1. 

6. Plot the graph of the electric field as a function of 1/r and calculate its slope. 

7. Place the free probe of the voltmeter at some radius between the rings (say, 4 cm from the 

center); read the potential and record this value in Table 2. Repeat the above step for a few 

more different radii; e.g., try r = 5 and 6 cm, for instance.  

8. Calculate the theoretical values of the equipotentials you have obtained in the previous step 

using the formula given in remark 2. Compare them to the experimental equipotentials 

readings. All the data and results must be recorded in Table 2. 

Figure 2: Schematic apperance of the experimental setup 

 

 

𝑑𝑉
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PART B:  

  

1. Connect the terminals of the power supply to the two silver dots that are apart from each 

other by 7 cm, on the second half of the carbon sheet away from the rings as shown in Fig. 2, 

and repeat the above procedure. Use Table 3 to record all of your data.  

 

Remark 1:  Potentials will be measured by a digital voltmeter. One possible 

concern is that we may alter the potential by placing the voltmeter probe in  contact 

with the conductive paper. This is a problem with typical meter  movements, which 

require substantial currents in order to obtain a deflection.  With high-impedance digital 

voltmeters, however, the current drawn from the  conductive paper is extremely small so that 

for most applications the change  in the potential will be negligible. Clearly, the voltmeter 

reading which you  record on the conductive paper will give you the value of the electric 

potential relative to the selected ring whose potential is arbitrary. In particular, if the potential 

on the inner is selected as the reference potential and is assigned the value zero (as in our case), 

then the potential on the outer ring will merely be the  voltage of the power supply.  

 

Remark 2: It should be noted that in this experiment, the electric field has not 

been generated by static charges, but instead, created by passing current  from one 

ring to the other via the conductive graphite paper. In order to  provide a satisfying 

explanation for such a situation and see the connection with a similar configuration with static 

charges in empty space, we need to discuss the behavior of the system which we have been 

investigating. In fact, in this experiment we examine the flow of current in the configuration 

consisting of two concentric circular silver rings with the space in between filled with graphite. 

If the resistance of the silver rings to circumferential current flow is very small compared to the 

resistance of the graphite to radial current flow, it should not make much difference where the 

current enters and leaves the silver (that is, where the probes are located). In that case, we may 

assume each silver ring is an equipotential. Indeed, comparing the respective electrical 

conductivities, we see that silver is at least a factor of 103 more conductive than graphite, around 

room temperature. So the assumption is valid provided that the silver painted rings are not 

extremely thin. Proceeding with this assumption, we can derive an expression for the electric 

potential in the region between the rings given that the potential difference between them is 

fixed at V0. If one has a radially symmetric geometry for the conductors such as concentric 

cylindrical tubes in three-dimensions or concentric rings in two-dimensions, then the electric 

field is radial and falls off with 1/r, i.e. E = K/r rather than 1/r2, which would be the result for a 

point charge. The constant K depends on the strength of the charge on the inner conductor and 

the units; we need not be concerned with this aspect of the problem just now.  

It can be shown that if we have an equipotential ring of radius 𝑎 at zero potential and an 

equipotential ring at 𝑟 = 𝑏, (𝑏 > 𝑎), at potential 𝑉0, then the potential at any intermediate 

radius will be given by the expression 

 

𝑉(𝑟) = 𝑉0

ln(𝑟 𝑎⁄ )

ln(𝑏 𝑎⁄ )
 .          (3) 

 

We may, for example, establish the potential 𝑉0 using a battery or a power supply and forget 

about the charges and their flow altogether. 
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Name & Surname : ID#: Section: 

 

Data & Results: [20]  

  

r (cm)  V (     )  E (      )  1/r (      )  

2.5        

3.0        

3.5        

4.0        

4.5        

5.0        

5.5        

6.0        

6.5        

7.0        

Table 1: Electric potential and field of two concentric rings as a function of r  

   

  

r (cm)  
V [measured] (     ) V [calculated] (     ) 

% Error  

        

        

        

        

   Table 2: Equipotentials 

 

  

r (cm)  V (     )  E (     )  1/r (      )  

2.5        

3.0        

3.5        

4.0        

4.5        

5.0        

5.5        

6.0        

6.5        

7.0        

Table 3: Electric potential and field of dots as a function of r 
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Questions: 

  

1) [5] What would you expect for the variation of potential V with radius r for a different radial 
direction? Measure a few points to check out your prediction.  
  

 

  

 

  

 

  

  

  

2) [5] Based on your measurements of electrical potential, what must be the direction of the 
electric field? What do the equipotentials look like?  
 

 

 

 

 

 

 

 

 

3) [5] If the power supply voltage in the experiment were doubled, how would the field pattern 
change? How about the potentials?  
 

 

 

 

 

 

 

 

 

4) [5] Why does not current flow along equipotential lines?  
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Conclusion: [15]  
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Plot [15] 

 


