a. Give an example of a nonzero vector n normal to the plane \mathcal{P} . No explanation is required.

$$\mathbf{n} = \begin{bmatrix} 3 & \mathbf{i} + \mathbf{-} / & \mathbf{j} + \mathbf{2} \end{bmatrix} \mathbf{k}$$

b. Give an example of a point P_0 in the plane \mathcal{P} . No explanation is required.

$$P_0\left(\begin{array}{cccc} 1 & , & \bigcirc & , & 2 \end{array}\right)$$

c. Give an example of a nonzero vector v parallel to the plane \mathcal{P} . No explanation is required.

$$\mathbf{v} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{bmatrix} \mathbf{j} + \begin{bmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{k} & \mathbf{j} \end{bmatrix} \mathbf{k}$$

d. Write inside the box parametric equations of one of the lines lying in the plane \mathcal{P} . No explanation is required. [The box should contain nothing else.]

L:
$$x = 1 + t$$

 $y = 3t$
 $z = 2$
 $-\infty < t < \infty$

e. Find an equation of the plane that passes through the point (1,1,1) and contains the line L in **Part d**. Show all your work.

let
$$A \times + B y + C_2 = D$$
 be the equation of the plane.
(1,1,1) is in the plane \Rightarrow $A + B + C = D$ (1)
L lies in the plane \Rightarrow $A \cdot (1+t) + B \cdot 3t + C \cdot 2 = D$ for all t
 \Rightarrow (2) $A + 3B = 0$ and $A + 2C = D$ (3)
(2) \Rightarrow $A = -3B$ and (1) \Rightarrow $D = -B$
(1) and (3) \Rightarrow $C = B$ and (1) \Rightarrow $D = -B$
Taking $B = -1$ gives the equation: $3x - y - z = 1$