2a. In each of **0-4**, indicate <u>all</u> possible completions of the sentence that will make it into a true statement by \checkmark ing the corresponding \square s. No explanation is required.

- \square a convergent sequence
- □ a divergent sequence
- □ a convergent series
- a divergent series
- \square none of these

2
$$\left\{\frac{1}{n}\right\}_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}$$
 is

- ☑ a convergent sequence
- \square a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

3
$$\left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^{n-1}}, \dots\right\}$$
 is

- a convergent sequence
- □ a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

- \square a convergent sequence
- \square a divergent sequence
- a convergent series
- \square a divergent series
- \square none of these

2b. In each of **5-6**, if there exists a sequence $\{a_n\}_{n=1}^{\infty}$ satisfying the given conditions, write its general term inside the box; and if no such sequence exists, write Does Not Exist inside the box. No explanation is required.

5 The sequence $\{a_n\}_{n=1}^{\infty}$ diverges and the sequence $\{(-1)^n a_n\}_{n=1}^{\infty}$ converges.

$$a_n = \left(-1\right)^{n}$$

6 The series $\sum_{n=1}^{\infty} a_n$ converges and the series $\sum_{n=1}^{\infty} (-1)^n a_n$ diverges.

$$a_n = \frac{(-1)^n}{n}$$