1. A twice-differentiable function f on $(-\infty, \infty)$ satisfies the following conditions:

①
$$f(-2) = A$$
, $f(-1) = B$, $f(0) = C$, $f(1/2) = -1$, $f(D) = 0$ where $A < C$

$$3 f'(x) < 0 \text{ for } x < -1, f'(x) > 0 \text{ for } x > -1,$$

$$f''(x) < 0 \text{ for } x < -2 \text{ and for } x > 1/2, f''(x) > 0 \text{ for } -2 < x < 1/2$$

a. Sketch the graph of y = f(x). Make sure to clearly show all important features.

b. Fill in the boxes to make the following a true statement.

The function $f(x) = \frac{ax+b}{\sqrt{x^2+c}}$ satisfies the conditions ①-④ for suitable real numbers A,B,C,D if the constants a,b and c are chosen as

$$a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 and $c = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$